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Abstract—Server-based computing in space has been
recently proposed due to potential benefits in terms
of capability, latency, security, sustainability, and cost.
Despite this, there has been no work asking the ques-
tion: how should we architect systems for server-based
computing in space when considering overall cost. This
paper presents a Total Cost of Ownership (TCO)-based
approach to architecture of server-based computing
systems for space (Space Microdatacenters - SµDC) for
processing data produced by low Earth orbit (LEO)-
based Earth observation (EO) satellites. We show that
power of compute is the primary factor in determin-
ing SµDC TCO, though the dependence is sublinear.
Second, the impact of compute mass, monetary cost,
and communication on TCO is relatively insignificant.
Third, architectures with the highest FLOPs

W provide
much higher performance per TCO $ even if they have
poor FLOPs

$ . We leverage these insights to advocate
extreme heterogeneity designs for SµDCs. These designs
reduce SµDC TCO by 116× in spite of poor FLOPs

$ char-
acteristics. We also show that (a) collaborative compute
constellations — constellations in which EO satellites
are also equipped with compute hardware — further
improve SµDC TCO by 1.31 to 1.74×, (b) a distributed
architecture reduces TCO by 10% over a monolithic
architecture, and (c) low monetary cost of compute
can be leveraged to provide near zero cost compute
overprovisioning which improves an SµDC’s availability
significantly and supports graceful degradation. Over-
all, this is the first paper on cost-aware architecture and
optimization of a SµDC.

I. Introduction
Space is increasingly being suggested as a new frontier

for server-based computing [9], [35], [46], [53], [66] (Fig-
ure 1). First, there are considerable bandwidth and cost
bottlenecks to moving large amounts of satellite generated
data to Earth for server-based processing, instead of pro-
cessing it in space itself on dedicated compute servers [9],
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Figure 1: Server-based computing in space: key motiva-
tions.

[19]. Second, moving satellite-generated data to Earth
before processing increases latency - limiting the use of
space data for critical low-latency applications such as
aircraft detection [33], [69], realtime traffic monitoring [39],
flood and forest fire detection [85], etc. Third, moving
space data to Earth for processing has security implica-
tions - providing a sophisticated adversary opportunities
to disrupt, decipher, or contaminate communication and
processing [96]. Processing satellite data on space-based
servers limits security vulnerabilities [99]. There are also
arguments that space-based computing would be more
sustainable [50], [66] even for terrestrial data since it would
be powered primarily by the sun. It may also be cheaper
as the launch costs decrease [37].

Despite this, there has been no work asking the question:
how should one architect systems for server-based comput-
ing in space when considering overall cost? It is unclear
what the right metrics are, what the key design parameters
are, and what the new opportunities and challenges are,
especially with respect to terrestrial datacenters.



Figure 2: A 4 kW SµDC (w/o bus frame and wiring). In
addition to the solar array (right) and radiator (top), The com-
ponents are 1) ISL Transceiver, 2) N2 tank, 3) heat exchange
system and heat pump, 4) payload compute vessel, 5) reaction
wheels and ADCS, 6) battery and PDU, 7) CDH and TT&C,
8) fuel tank, 9) thruster, 10) star tracker.

This paper presents a system-level approach to cost-
aware architecture of server-based computing systems for
space for processing data produced by low Earth orbit
(LEO)-based Earth observation (EO) satellites. We as-
sume that servers in space will initially be housed inside
a self-contained satellite that supports power generation
and distribution, cooling, etc., and, therefore, resembles a
terrestrial microdatacenter in its organization [1]. A recent
work making a case for SµDCs has also considered the
same organization for servers in space [9]. Figure 2 shows
a representative 4 kW SµDC.

To identify the key metric for SµDC design, as well as
opportunities and challenges for architecture and optimiza-
tion, we rely on a TCO (total cost of ownership)-driven
approach. TCO analysis allows one to estimate the overall
costs of acquiring and operating a datacenter [30], as well
as impact of different metrics and design components on
the TCO. We extended an existing free satellite cost model
to include both the cost of compute hardware itself and
the substantial cost of required support systems, such as
power generation, thermal management, and free space
optics (FSO) based inter-satellite-links (ISLs).

With this TCO model, we present the first TCO analysis
for a SµDC. Our TCO analysis produces a number of key
insights. First, the analysis shows that the cost of a SµDC
depends strongly but sublinearly on the power of com-
pute (and, therefore, computational capability). Second,
the dependence on other factors such as compute mass,
monetary cost, and communication on TCO is relatively
insignificant - this is different from terrestrial datacenters
where monetary cost of computation as well communica-
tion costs are a significant fraction of the TCO [30]. Third,
we find that the architectures with the highest FLOPs

W
provide significant improvements in performance per TCO
dollar even if these architectures have poor FLOPs

$ , and
thus special purpose, accelerator-based architectures may
be particularly attractive in a SµDC compared to more
general purpose computational architectures.

We leverage these insights to perform a design space

exploration of accelerator-based architectures to optimize
TCO across a selection of key Earth observation tasks (i.e.,
image classification, object recognition, image regression,
and image segmentation). We show that extremely het-
erogeneous designs consisting of multiple accelerators, each
targeting individual neural network layers, minimizes TCO
— a major departure from a terrestrial datacenter. These
designs reduce SµDC TCO by 116× in spite of poor FLOPs

$
characteristics.

We also present three system architecture optimizations
that leverage the insights our TCO anaysis generates.
First, we show that collaborative compute constellations
— constellations in which EO satellites are also equipped
with compute hardware to perform some initial computa-
tion on data before offloading data to an SµDC — further
improve SµDC TCO by 1.31 to 1.74×. Second, we show
that a distributed architecture with several small SµDCs
may minimize TCO vs a monolithic architecture with one
large SµDC supporting the same aggregate computational
capability due to experience effects. A distributed archi-
tecture has an added advantage of supporting graceful
degradation in case of failures. Finally, we show that
compute over-provisioning can be supported at near zero
cost on a SµDC due to low monetary cost of compute.
Among other things, this can be used to improve the
availability of a SµDC through sparing, for example.

Overall, this is the first paper on cost-aware architecture
and optimization of a SµDC and contributes the first SµDC
TCO model, the first SµDC TCO analysis, several key
insights to drive SµDC architecture, and several SµDC ar-
chitectural optimizations, such as extremely heterogeneous
design, collaborative compute constellation distributed
SµDC architecture, and near zero cost overprovisioning -
with a quantification of their benefits.

II. Modeling TCO of a Space Microdatacenter
To model TCO of a SµDC, we build on the Small

Satellite Cost Model (SSCM) [4]. SSCM is a parametric,
cost-estimating relationship (CER) based model built and
maintained by the Aerospace Corporation that is used to
estimate the total cost of small satellites (i.e., satellites
< 1000 kg). The model is based on a survey of 68 small
satellites that captures satellite design parameters and
satellite subsystem and operational costs. This data serves
as the input to nonlinear regression models to identify the
CER parameters. Although the survey looks at a large
number of satellite design parameters (> 200), the regres-
sion models eliminate all but seventeen of the parameters,
based on statistical analysis and experience.

The SSCM CERs estimate costs of all satellite sub-
systems and engineering processes except payload, which
SSCM does not attempt to estimate. Each CER is further
split into two cost categories: non-recurring (NRE) and
recurring (RE) costs. NRE cost is associated with the
design, verification, test, and management costs associated
with producing a satellite prototype, as well as design and



procurement of ground station equipment, while RE costs
are the costs associated with procurement, deployment
(i.e., launch costs), and lifetime management (including
decomissioning) of the satellite itself. That is to say, the
total cost (modulo payload) of the first satellite is equal
to the sum of the NRE and RE costs of each CER, while
the total cost of each subsequent satellite is given by RE
costs alone.

SSCM is a staple tool of satellite designers, including
those from NASA and MIT for cost modeling of Earth
observation satellite constellations [59], by ESA for cost es-
timations for commercial launch vehicle [22], by the Naval
Academy Small Satellite Program [40], by Satrec Initiative
and NARA Space Technology [43], by Ienai Space [91], and
by the AeroSpace Corpoation [45]. In spite of its popularity
among aerospace industry, space agencies, military, and
academia, SSCM, by itself, is inadequate for our needs. It
does not model data processing subsystem or FSO, or their
impact on other satellite subsystems. We extended SSCM
to create a TCO model for SµDCs. The model differs from
SSCM primarily in modeling of power and mass costs of
computation and FSO-based communication, and impact
of power and mass of computation and communication on
other subsystems such as power generation, cooling, etc.
Table I lists how values for different parameters in a SµDC
cost model are determined. Below we provide details for
some of the key derivations. The reader may skip directly
to Section III without loss of continuity.

As mentioned above, we extend SSCM to include the
cost of data processing and FSO. Our extensions were
developed in consultation with five outside satellite design
experts, including an original contributor to SSCM, and
key mission designers for numerous small, Earth obser-
vation satellite missions, and for large satellite missions,
including NASA’s Galileo Jupiter Orbiter and the Wake
Shield Facility. Our model increases the required power
generation capacity of the satellite (SµDCs, being LEO-
based, are solar powered; distant missions may use nuclear
batteries [63]) as well as its cooling requirement (we as-
sume radiator-based cooling - Section III-B) by the power
cost of computation. Heat pump power (to pump heat to
the radiator to increase its temperature - Section III-B)
is determined based on the heat pump’s Coefficient of
Performance (CoP), which, in turn, is determined by radi-
ator and ambient temperatures. Beginning of Life (BOL)
system power, the amount of power generation that must
be supported, is determined by End of Life (EOL) system
power - the power requirements at the end of the satellite
lifetime, the solar cell technology, and the orbit specific
solar panel efficiency decay rate (generally ≤ 3% annual
loss) - to account for the fact that efficiency of solar panels
degrades over time, and the satellite’s projected lifetime.

Increased compute power also increases the mass and
power of other subsystems. We model relationships be-
tween additional compute power and other model inputs:
power subsystem mass, structural subsystem mass, Atti-

tude Determination and Control System (ADCS) mass,
propulsion system mass, fuel mass, command and data
handling system mass, and thermal subsystem mass. Fuel
mass is calculated using the rocket equation [56] —
mfuel = mdry

(
1 + e∆v/ve

)
where ∆v is a mission de-

pendent value, ve is the exhaust velocity of the rocket
engine, and mdry is the ‘dry’ mass of the satellite (i.e., total
satellite mass excluding fuel). The direct monetary cost
of compute was added as well. To model the cost of FSO
communication, we add FSO mass and power requirements
to the mass and power of the Command and Data Han-
dling (C&DH) subsystem. As C&DH cost estimates grow
with communication data rates, and since FSO data rates
are orders of magnitude better than RF, and the SSCM
assumes RF communications, we first downscale the FSO
data rate by the bandwidth ratio between FSO and X-
band RF communications. Failure to do this downscaling
results in unreasonably high C&DH cost estimates. Optical
ISLs mass, power, and data rates are based on published
values for existing commercial systems for LEO-LEO and
LEO-GEO/MEO (medium Earth orbit) communication.

(a) SEER-Space (b) SSCM-SµDC

Figure 3: Subsystem cost breakdowns.

We compare the model against results produced by
a commercial satellite cost model. Figure 3 shows the
subsystem cost breakdown of a 4 kW SµDC as estimated
by our SµDC variant of SSCM, as well as SEER-Space,
a commercial spacecraft cost estimation model [27]. At
first glance, the charts may appear quite different, but
these differences are, in fact, minor or due to accounting
differences. For example, in the SEER-Space model, the
thermal subsystem is selected as ‘active’, rather than
‘passive’, as the designed SµDC uses an actively powered
heat pump. However, in the SEER regression data set,
active cooling was rare, which means the data are regressed
against mostly passive cooling systems. Instead, in the
SSCM-SµDC model, the power cost of active thermal
management is included as a cost of the power subsystem.
This means that SEER-Space distributes the cost more
evenly between the thermal and power subsystems, while
SSCM-SµDC concentrates the cost in the power subsys-
tem. However, the sum of these two subsystems makes up
34.3% and 33.4% — a percent difference of less than 3%.

Structure subsystem costs are also fairly equal — they
have a 7.4% percent difference. SEER-Space underesti-
mates the ADCS cost relative to SSCM-SµDC. This is
because SSCM-SµDC enables fine-grained control over
ADCS performance parameters, which allows specifying



a SµDC to have 50 microminute-of-angle pointing capa-
bilities, while such fine-tuned control is not possible in
stock SEER-Space. Similarly, SSCM-SµDC overestimates
the cost of propulsion relative to SEER-Space. This is
due to the fact that SSCM-SµDC is designed around
conventional monopropellant and bipropellant chemical
thrusters, rather than ion thrusters, while SEER-Space is
parameterized to accept ion thrusters. Thus, SSCM-SµDC
overestimates the cost of propulsion for larger, high power-
generation satellites such as a 4 kW SµDC.

SSCM-SuDC results also match well with the costs we
have observed in our own previous and ongoing satellite
design and launch efforts in the Laboratory for Advanced
Space Systems at Illinois (LASSI).

We will provide our model, implemented as a Rust
library, on request to anyone who can present an SSCM
license. Public access to SSCM-SuDC will lead to further
community-driven validation.

III. TCO analysis of a Space Microdatacenter
Using the TCO model, we first study how the mission

cost of a space microdatacenter changes based on the
power budget devoted to compute (and, therefore, com-
putational capability). Figure 4 shows how TCO increases
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Figure 4: TCO vs Lifetime for 500 W, 4 kW, and 10 kW
SµDCs relative to the 500 W SµDC with a one year
lifetime.

with SµDC lifetime. For long lifetime missions, the cost
grows superlinearly. The superlinear cost increase is driven
by several factors. First, NRE and RE costs increase with
lifetime, as additional reliability features are required. Sec-
ond, fuel mass needed for station-keeping increases linearly
with lifetime. Third, BOL power generation requirements
increase exponentially, which increases power subsystem
mass and, in turn, ADCS and fuel mass. For the rest of
the analysis, we use five year lifetimes as it corresponds to
roughly two technology generations for compute1, while
also limiting the total ionizing dose received by the non-
radiation hardened computers. For similar reasons, Star-
link targets a five year lifetime for its satellites.

Figure 5 shows the total and subsystem level costs of
SµDCs from 0.5 kW to 10 kW. The costs are normalized
against the total cost of a 0.5 kW SµDC. The results show
that the power of compute is the primary factor in
determining TCO of a SµDC. Cost can increase by

1Five years is also approximately the time of two generations of
NVIDIA’s flagship neural network accelerator GPU line (e.g., A100
to B100)

over 3× when the compute power is changed from 0.5 kW
to 10 kW. It is interesting to note is that the dependence is
sublinear. A 20× increase in power corresponds with < 4×
increase in total cost. There are two key reasons for this
sublinearity. First, several technologies used in satellites
have stabilized (e.g., solar panels, thermal systems, etc).
So, increase in compute power does not increase their cost
much — e.g., costs associated with design, test, and inte-
gration of these subsystems scale sublinearly. Second, total
satellite mass, which affects both launch costs and design
of different subsystems and therefore TCO, scales only
slowly with compute power, as some satellite components
require minimal scaling (e.g., C&DH, TT&C, ADCS, etc)
while other require only limited amounts of scaling (e.g.,
propulsion fuel mass must scale, but only proportionally
with the increase in overall mass — i.e., Amdahl’s law
is in effect). This means that non-compute costs increase
sublinearly as the size of the compute payload increases.

Figure 5 also shows that, unlike terrestrial datacen-
ters, where hardware costs are a majority portion of
TCO [30], the impact of monetary cost of compute
on SµDC TCO is relatively insignificant. Mass pro-
duced, commercial-off-the-shelf hardware, such as com-
modity NVIDIA GPU servers, have very low cost com-
pared to the custom components common on satellites. As
a result, the computer hardware cost of a SµDC is < 1%
of TCO. Further, computer hardware is light — making
up only a few percentage of total mass (Figure 6). Even
after packaging, PCB integration, adding cooling, etc., an
NVIDIA A40 GPU server has specific power of > 35 W

kg .
Further, the specific power of computer chips is very high:
a 300 mm wafer has mass of ∼ 125 g but represents tens
of kW compute power. This means adding additional,
redundant chips to a system has negligible impact on both
TCO and satellite mass (which itself affects TCO).

Figure 5: TCO vs Compute Power. Costs are relative to
the total cost of a 500 W SµDC.

Figure 7 shows the relationship between TCO and ISL
data rates assuming today’s FSO power efficiencies [9].
For context, Figure 8 shows the ISL channel capacities
needed to saturate various levels of compute hardware,
based on application profiling of representative space data-
based applications on RTX 3090 GPUs [9] (similar to many
previous works [9], [18], [19], we assume that computation
will be performed on GPUs - however, all our analyses and



TABLE I: Derivations for SSCM-SµDC Input Parameters.

Parameter Equation Paramter Equation

Compute Power Consumption (W) Pcomp Compute Ambient Temperature (K) Tamb

Radiator Temperature (K) Trad ISL Capacity ( Gbit
s ) ISLcap

Satellite Lifetime (years) l Solar Efficiency Decay Rate r = 0.03 [41]
Heat Pump

Coefficient of Performance CoP = Tamb
Trad−Tamb

[12] Heat Pump Power (W) Php = Pcomp

CoP

ISL Power (W) ISLcap

3 [58] EOL Power (W) PEOL = Pcomp + Php + PISL + Prest

BOL Power (W) PBOL = PEOL × (1 − r)l Power Subsystem Mass (kg) mP = 4.384 × 10−3PBOL − 3.5 × 10−1

Structure Mass (kg) mstruc = 9.384 × 10−3PBOL + 221 ADCS Mass (kg) madcs = PBOL
26.65

C&DH Mass (kg) mc&dh = 2.52 × 10−2PBOL + 1.25ISLcap Fuel Mass (kg) mfuel =
[

e
∆v

vexhaust − 1
]

mdry [56]

Figure 6: Compute power vs mass. Masses are relative to
the total mass of a 500 W SµDC.

Figure 7: TCO vs Communication.

conclusions apply to other processor architectures as well).
Based on these results, we see that a 500 W SµDC needs no
more than 25 Gbit

s ISL to support even the most lightweight
applications, which corresponds to a less than 30% increase
in TCO. Ensuring sufficient ISL capacity for 4 kW and
10 kW SµDCs is even more affordable — both see less than
26% TCO increase to support ISLs sufficient for the most
lightweight applications. In reality, ISL requirements and,
therefore, impact on TCO will be much lower as some
applications require significantly more computation, and
thus less channel capacity is needed to saturate compute.
Ongoing improvements in FSO power efficiency promise to
further decrease the TCO impact of ISLs [42], [70]. Overall,
the results show that the impact of communication on
SµDC TCO is small.

2Estimated based on # of DSPs

TABLE II: Price, TDP, and TFLOPs for several GPGPU
architectures, and several radiation hardened architectures.
Data on radiation hardened designs is from [72].
System TID (krad(Si)) Price ($) TDP (W) TFLOPs (FP32) TFLOPs (TF32)

RTX 3090 2 to 10 1690 350 35.58 N/A
A100 2 to 10 17 210 300 19.5 156
H100 2 to 10 43 989 350 [67] 51 756
Radeon 780M 2 to 10 N/A 15 8.29 N/A
BAE RAD750 200 200 000 5 0.000 27 N/A
MPC8548E 100 200 000 5 0.008 N/A
Virtex-5QV 1000 75 000 15 0.08 N/A
Kintex UltraScale XQR 100 N/A N/A 0.652 N/A

Figure 8: ISL datarates required to saturate RTX 3090 GPUs
for several satellite imagery applications taken from [9], with
compute power in 0.5 kW to 10 kW.

Figure 9: TCO vs Architecture

Then we focus on the impact of processing hardware
architecture (Table II) for a given compute power budget.
Note that the A100 and H100 have max FLOPs

W advantage
of 5.1× and 21.2×, respectively, over RTX 3090. The A100
and H100 achieve this high power efficiency via inclusion
of ‘TensorCore’s which accelerate the low precision (TF32)
tensor-based arithmetic found in DNNs. But their max
FLOPs

$ are worse - 0.50× and 0.82× than the RTX 3090.
Thus, a terrestrial datacenter may choose to use a large
number of RTX 3090 systems rather A100 or H100 since
better FLOPs

$ of RTX 3090 will reflect as better FLOPs
$TCO

-
in terrestrial datacenters, server costs up to 72% of TCO,
while power cost is < 10% [8], [30]. For a SµDC, however,
compute costs are only a tiny fraction of the overall TCO,
and A100 (H100) achieve > 6× (> 9×) better energy
efficiency on EO applications than RTX 3090 [9].

Figure 9 shows TCO dependence across architectures.
We see that the TCO effects are minimal due to relatively
low cost of the compute. This means that A100 and H100
are a lot more attractive than RTX 3090 since, unlike
the case of terrestrial datacenters, they will provide much
higher FLOPs

$TCO
for SµDCs (as it is power that greatly affects

the overall TCO). In general, architectures with the
highest FLOPs

W provide much higher performance per
TCO $ for a SµDC, even if they have poor FLOPs

$ .



Finally we study the impact of compression on TCO
since compression can be used to decrease communication
costs. Figure 10 gives TCO cost scaling of a 4 kW SµDC
using different compression algorithms. As this does not
include power cost of decompression, these are upper
bounds on the possible TCO improvements. With RTX-
3090 servers, CCSDS3 provides < 3% TCO savings, loss-
less JPEG2000 provides 5% TCO savings, and a high
PSNR, quasi-lossless neural compression algorithm [7] pro-
vides 8% TCO savings. However, as compute hardware
becomes more energy efficient, the portion of overall cost
determined by the ISL grows. Thus, asymptotically, the
compression algorithms provide 11.7%, 20.5%, and
26.5% decreases in TCO as the energy efficiency
scaling grows.
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Figure 10: TCO vs Energy Efficiency for a 4 kW SµDC
using different compression algorithms to reduce ISL ca-
pacity requirements.

A. Power impact on SµDC vs terrestrial datacenter TCOs
Fig. 11 shows normalized TCO for two satellite TCO

models and three terrestrial datacenter TCO models with-
out NRE amortization. In the satellite context, “[In-
fra]structure” refers to the satellite bus structure, while
in the terrestrial context, it refers to datacenter facilities.
Similarly, “Networking” refers to off-satellite communica-
tions (ISL, downlinks) in the satellite context, while it
refers to inter- and intra-datacenter networking costs in

3a standard lossless compression algorithm for use in space
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Figure 11: Normalized datacenter TCO from two satellite
TCO models and three terrestrial datacenter TCO models.

terrestrial datacenters. We see that TCO for terrestrial
datacenters is dominated by server and facilities costs, not
power, while power dominates TCO for SµDCs.

There are two key reasons why power constitutes a
significant fraction of TCO for space datacenters whereas it
is only a small portion in the terrestrial datacenters. First,
the cost of power is much lower for terrestrial datacen-
ters. Terrestrial datacenters typically draw power from a
grid whose capital and infrastructure costs get amortized
over a large number (often millions) of commercial and
non-commercial users, receive significant government tax
credits and other subsidies that reduce their cost of power
(even the grid is typically heavily subsidized), and pay only
for the actual power used (instead of the worst case). Space
datacenters, on the other hand, generate their own power
and directly pay for it (instead of drawing power from a
grid), do not share their power source and, therefore, have
no amortization benefits, do not receive any governmental
support to reduce power cost, and have to allocate power
generation for the worst-case (since there is no grid to draw
excess power from). Second, power in a space datacenter
impacts the cost of other components in ways that are
unique to a space datacenter, magnifying the impact of
power on the total cost. For example, the mass of the
satellite grows directly with the size of the solar panel and
the size of the radiator. This means that thruster rocket
fuel must increase proportionally with the increase in
satellite dry mass. In addition, larger and more expensive
thrusters may be needed to produce proportionally more
thrust. All of this increases overall cost

B. Thermal Management
Since satellites are in vacuum, the only way heat es-

capes from a satellite is via radiation — convection and
conduction may move heat within the satellite but cannot
move heat away from the satellite. Equation 1 shows the
heat radiated by the satellite as a function of surface area
incident to free space (A), and the emissivity (ϵ) and the
temperature (T ) of the satellite (vs the temperature of the
background).

Pemit = ϵσAspaceT 4, (1)

where The Stefan-Boltzmann constant is σ = 5.67 ×
10−8 W

m2 K4 .
Radiation is extremely efficient in space due to the

2.7K temperature of the space background (vs 270K+ on
earth). A 1 m2 radiator (ϵ = 0.86) at 45 ◦C will emit
just shy of 1 kW when both radiator faces are oriented
toward deep space. Only a 4m2 radiator can support the
heat dissipated by our 4 kW SµDCs. When required, the
radiator temperature is increased using an active thermal
control system [6], [54], [81] to increase the amount of heat
dissipation even further. Radiators on satellites with active
cooling are routinely used to remove heat in excess of 10
kW [6], [54], [81]. Figure 12 shows the trade-offs between



radiator size and radiator temperature needed to achieve
fixed amounts of emitted power (radiative flux).
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Figure 12: Radiator size vs temperature. The curves show
the required panel radiator area needed to radiate 500 W,
4 kW, and 10 kW when both panel faces point towards
empty space. Radiators have emissivity ϵ = 0.86 [92].

IV. Extreme Heterogeneity for Low-cost In
Space Computing

A. Applications
With the above insights, we ask the question - what

are good potential architectures for a SµDC’s compute
payload to minimize TCO? To address this question, we
consider streaming, non-longitudinal applications rather
than longitudinal applications which require storing large
datasets. Bleier et al. [9] identified a sampling of non-
longitudinal applications processing EO satellite imagery.
Users of these applications include NASA [82], ESA [68],
the California Air Resources Board [11], USDA [26], the
Ministry of Agriculture of China [97], the US Department
of Transportation [51], etc. These applications perform
object recognition, image classification, image regression,
and image segmentation tasks on the satellite data. For
these tasks, artificial neural networks — predominantly
convolutional neural networks (CNNs) — have emerged
as the computational kernel of choice, due to their high
accuracy and precision. Figure 13 depicts the relationship
between these applications, the image processing tasks,
and the CNNs which have been deployed for these tasks
in the context of satellite data image processing.

We first consider GPU-based data processing. Our EO
image processing workloads fit fully into a single GPU.
As such, expensive, and high power interconnects, such as
those found in NVIDIA DGX servers, are not necessary.
Instead, discrete GPUs can compute batches in parallel, as
depicted in Figure 14. Batching may induce some latency
between image generation and image processing. A LEO
Earth observation satellite may produce around six images
per minute (exact rate depends on orbital velocity, and
ground frame size), and a SµDC may receive images from
one or more observation satellite. Thus, it may take up to
several minutes for an energy-minimizing batch size to be
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Figure 13: Applications, tasks, and kernels.

Figure 14: The payload performs batch-computing of EO
satellite imagery.

reached. In this scenario, a suboptimal batch size may be
used. In addition, this latency is still significantly better
than the latency achieved using a traditional bent-pipe
downlink model [19]. As compute completes, the results
are sent to an analyzer, which determines whether the
results are ‘insights’ which should be downlinked to Earth,
or whether the results contain little relevant information,
in which case they can be discarded. We focus on a 4 kW
SµDC. This size allows a single SµDC to support constel-
lations of 64 EO satellites at current imaging resolutions
for nearly all applications, as shown in Tab. III.

Table III depicts performance and energy characteristics
of these application workloads on an RTX 3090 GPU — a
commodity class GPU manufactured in Samsung’s 8 nm
tech node. For these results, we consider offline batch
processing of workloads since many EO image processing
applications are latency insensitive — current EO image
processing latencies are measured in hours [86], due in
large part to the time it takes an LEO satellite to orbit
above a downlink station. Also, batch processing is more
energy efficient than latency sensitive online or stream
processing, since it enables utilizing energy-minimizing
batch sizes, and the lack of work-item level latency con-
straints means high power operating points can often be
avoided [98].

As we see, the commodity GPU shows poor energy
efficiency, which, as shown earlier, leads to high TCO costs
(since higher compute power is needed for processing).
Below we consider accelerator-based architectures to im-
prove energy efficiency and lowering space microdatacenter
TCO.

B. Design Space Exploration
Our TCO analysis (Section III) showed that architec-

tural optimizations focused on energy efficiency can have



TABLE III: Application performance on RTX 3090 com-
modity GPU. The number of 4 kW SµDCs with RTX 3090
GPUs needed to support a constellation of 64 EO satellites
is shown in the rightmost column.

App Name P (W) Util (%) Infer time (s) kpixel
J # SµDC

Air Pollution 119 25 0.59 1168 1
Crop Monitoring 222 42 1.57 395 1
Flood Detection 325 88 5.53 307 1

Aircraft Detection 124 26 0.26 74 1
Forage Quality Estimation 129 27 0.56 843 1

Urban Emergency Detection 266 72 2.04 569 1
Oil Spill Monitoring 347 98 3.84 231 1
Traffic Monitoring 19 < 1 2.72 2597 1

Land Surface Clustering 108 2 0.35 2175 1
Panoptic Segmentation 160 80 7.81 20 4

Figure 15: Relative TCO vs Energy Efficiency for in-space
and terrestrial data centers, assuming compute hardware
costs are invariant.

substantial impact on TCO for SµDCs. Figure 15 shows
TCO scaling for in-space and terrestrial datacenters as
hardware energy efficiency improves, assuming 1) baseline
of commodity hardware, and 2) hardware costs remain
constant. TCO breakdown for terrestrial datacenters is
from [30]. ‘On-Earth (Default)’ assumes that only en-
ergy costs scale. The ‘On-Earth (HPE)’ and ‘On-Earth
(LPO)’ curves also scale the cost of in-datacenter power
distribution for high performance and low-power, high-
density server configurations, respectively. According to
this model, server costs range from 57% to 72% of TCO,
while power costs are only 7% to 13% of TCO in terrestrial
datacenters. This is very different from TCO breakdown of
a SµDC where < 1% of TCO is in computer hardware, and
over a third of TCO is in power and thermal management
subsystems. This has two implications — 1) changes to
hardware cost have large impact on terrestrial TCO, but
only minor impact on SµDC TCO, and 2) improvements in
energy efficiency may have large impact on SµDC TCO,
but muted impact on terrestrial datacenter TCO unless
coupled with decreased hardware cost4.

We see that the impact of compute energy efficiency
on TCO of a terrestrial datacenter is minimal - less than
ten percent for the On-Earth (Default) case. Even when
accounting for on-premise power distribution hardware,
the impact of compute energy efficiency on TCO is lim-
ited to twenty-five percent (On-Earth (LPO)). In space,
however, increased energy efficiency of compute leads to
a nearly sixty-six percent decrease in TCO. Thus, when

4Low-cost energy efficient hardware such as neural network accel-
erators may still be passed over for relatively expensive and power
consuming, general purpose hardware if software cannot easily be
ported to the accelerators.

Figure 16: Relative TCO vs Energy Efficiency for in-space
and terrestrial data centers, assuming compute hardware
costs scale logarithmically with the energy efficiency scalar.

Figure 17: Energy efficiency improvements for accelerator
architectures vs baseline commodity GPU.

not accounting for compute hardware cost, TCO for an
in-space datacenter is up to 250% more sensitive to energy
efficiency improvements than terrestrial datacenters.

In reality, energy efficiency improvements rarely come
for free — they often impact cost. Figure 16 assumes
logarithmic price scaling of compute hardware with respect
to energy efficiency. Thus, for example, computer hardware
which is 100× more energy efficient than baseline costs 3×
more money. Even with this highly sublinear price scaling,
TCO for terrestrial datacenters increases dramatically —
over a 100% increase in TCO with 200× energy efficiency
scaling. This is because compute hardware, not energy,
make up the majority of terrestrial datacenter TCO. In
space, however, the price of commodity hardware has
minimal impact on TCO. Thus, this sublinear price scaling
is effective in space. Even at a 1000× energy efficiency
scalar, TCO is still decreasing.

This suggests that architectures that trade off cost for
energy efficiency may be much better fit for space. Fig-
ure 17 demonstrates the achievable energy efficiency gains
from a limit study using accelerator-based architectures
over commodity GPUs on the neural networks listed in
Figure 13. The three accelerator system architectures con-
sidered are: 1) Global Accelerator — a homogeneous system
using the accelerator with the best geometric mean energy
efficiency across all networks, 2) Per-Network Accelerator



(a) A homogeneous global accelerator architecture.

(b) A heterogeneous per-network accelerator architecture.

(c) A heterogeneous per-layer accelerator architecture.

Figure 18: Three accelerator-based design points replace
the GPU compute blocks of Fig. 14 with one or more differ-
ent type of accelerator. In each design, distinct accelerator
designs have distinct colors.

– a heterogeneous system of accelerators consisting of the
best accelerators for each network, 3) Per-Layer Acceler-
ator – a heterogeneous system of accelerators consisting
of the best accelerators for each layer. These designs are
depicted in Figure 18. They replace the ‘Compute k’
blocks of Figure 14 with a pipeline of ANN accelerators.
In Figure 18a, a single accelerator design is used to run
all workloads. In Figure 18b, each individual network has
its own accelerator. In Figure 18c, each layer of each
network has its own accelerator. For each accelerator
pipeline, each layer’s output features are double buffered in
the I/O feature buffers, enabling asynchronous pipelined
execution. In the heterogeneous architectures, inputs to
a neural network are dispatched from the Input buffer
to one of the several parallel pipelines which corresponds
with the selected neural network. Neural network outputs
are buffered in the output buffer before being sent to the
Results Analyzer for insight extraction.

In each design, outputs of each non-final layer are dou-
ble buffered as inputs to the subsequent layer, enabling
pipelined execution. Since, in all cases, only a single neural
network is executed at a time, the per-network and per-
layer accelerator designs have a unified input buffer shared
by each layer-1 accelerator, and an output buffer shared
by each final layer. Weights and biases for each layer are
stored in layer-specific weight buffers.

Energy values for the accelerator designs are estimated
using the Timeloop-Accelergy framework [95]. Timeloop-
Accelergy was also used to perform a design space ex-
ploration over Eyeriss-like [13] accelerators using row-
stationary dataflows to identify the best Global, Per-
Network, and Per-Layer accelerators. Dimensions in the

design space exploration are the length of the PE grid
in x and y dimensions and the size of input feature,
weight, and accumulation buffers. A total of 7168 designs
were evaluated. In order to determine the globally optimal
(energy minimizing) design, we use a geometric mean of
each design’s energy efficiency on all neural network layers.
Similarly, to determine the per-network optimal design, we
use geometric mean of each design’s energy efficiency on all
layers of the network. Energy values for the GPU baseline
were evaluated on a RTX-3090. Evaluations used CUDA
version 11.7, cuDNN version 8.9.0, and TensorFlow version
2.12. To find the most energy efficient batch sizes, we
ran inference 100 times on different batch sizes, and used
Python NVML to measure the average GPU utilization
and power consumption.

We see that the Global Accelerator system provides
an average 57.8× improvement to energy efficiency over
the baseline — sufficient to achieve a 60% reduction in
TCO. Heterogeneous architectures provide up to 116× on
average — sufficient to achieve a 63% reduction in TCO.

In general, the following insights emerge about archi-
tectures for space microdatacenters. First, energy-efficient
hardware holds promise to provide TCO savings higher
than would be expected from energy efficiency alone,
because mass reductions in power supply and thermal
management subsystems also lead to lower cost for other
satellite subsystems (e.g., propulsion, ADCS, structure,
etc.). Second, accelerator-based architectures are highly
effective in reducing the TCO of SµDC even with a higher
monetary cost for the accelerators. This is because of the
high cost of energy systems (i.e., power generation and
thermal management) relative to the compute hardware
for spacecraft. This stands in stark contrast with terrestrial
datacenters, where even logarithmic cost scaling of energy
efficient hardware leads to doubling of TCO, since the
majority of TCO for such datacenters is in hardware costs,
and only a small portion of TCO is in energy. Third,
homogeneous accelerator systems provide sufficient energy
efficiency to capture nearly all possible TCO reductions for
in-space datacenters, given current ISL power consump-
tion. However, as ISLs continue to improve in bandwidth
and energy efficiency (e.g., via DARPA’s Space-BACN
project [16]), the TCO benefits of heterogeneous acceler-
ator architectures over homogeneous accelerator systems
may increase (since the TCO associated with ISLs may
drop, which in turn increases the relative cost of compute).
Compression may also be used to reduce the impact of ISL
cost.

V. Collaborative Compute Constellation
Architecture

The constellation architecture that all our prior analysis
assumed is one where EO satellites lack significant compu-
tational capabilities. I.e., we assumed (Fig. 20a) that the
EO satellites are unable to run applications, or perform



data filtering — they only offload data to a SµDC for
processing.

However, there is significant interest in satellite edge
computing. For example, prior works have considered us-
ing compute on EO satellites to perform data cleaning
— filtering out unusable images, such as those occluded
by clouds [18], [19] on CubeSat class EO satellites. By
performing this filtering, the amount of data needed to be
downlinked to Earth is reduced. While these works have
attempted to directly address the ‘downlink deficit’, this
filtering may instead be applied to reduce the amount of
data sent via ISL to SµDCs. This allows reducing the total
amount of data which must be transmitted to a SµDC, and
thus also the total amount of processing a SµDC must
perform. This enables savings by reducing the SµDC’s
ISL capacity and power requirements, as well as power
dedicated to computation and thermal management. Such
a constellation architecture - collaborative compute con-
stellation - is depicted in Figure 20b, in which the EO
satellites leverage their own compute hardware to reduce
data transmission to the SµDC.

Figure 19 shows the TCO of a SµDC required to support
a constellation as edge filtering rates improve. The decrease
in cost is due to the shrinking size of the required SµDC.
At a filtering rate of zero, a 4 kW SµDC is required, but
at a filtering rate of 0.5, only a 2 kW SµDC is required.

Figure 21 shows the sensitivity of TCO benefits to the
energy efficiency factor of the compute hardware (normal-
ized against the TCO of a 4 kW SµDC). Since a collabora-
tive constellation reduces SµDC ISL and compute power
proportionally, it may be especially attractive for SµDCs
equipped with energy efficient, heterogeneous architec-
tures. Assuming cloud filtering (resulting in ≈ 2

3 reduction
in data transmitted), a collaborative compute constellation
architecture provides a 1.74×, 1.33×, and 1.31× improve-
ment in TCO against baseline SµDCs with a commodity
GPU-based architecture, a global accelerator architecture,
and a heterogeneous architecture, respectively, for a 4 kW
SµDC baseline.
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Figure 19: Relative TCO vs edge satellite filtering rate.
Baseline is a 4 kW SµDC.

VI. Distributed vs. Monolithic Architecture
A. Wright’s Law and TCO

Our earlier TCO analysis did not consider experience
effects. In aerospace, as well as many other manufacturing

(a) A baseline constellation
configuration.

(b) A collaborative compute
constellation configuration.

Figure 20: In the baseline configuration (a), all data
generated by EO satellites must be transmitted to the
SµDC. By performing filtering on the edge (b), EO satel-
lites reduce the amount of data they have to send to the
SµDC, which reduces the communication and compute
power consumption of the SµDC.
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Figure 21: Normalized TCO vs energy efficiency of com-
pute hardware and filtering capability of the EO satellites.

sectors, the impact of learning on unit costs is modeled via
Wright’s Law [60]: Cn = C1 · nlog2(b), where Cn is the cost
of the nth unit, and b is the ‘progress ratio’. Wright’s law
states that every time the number of units manufactured
doubles, the cost of the next unit will have gone down by
a fixed percentage. For example, if C1 = $1, and b = 0.9,
then C2 = $0.90, and C4 = $0.81, etc.

Wright’s law is especially powerful in aerospace, where
it originated [93]. Since spacecraft are very complex to
manufacture, a high progress ratio can be achieved —
often in the b ∈ [0.7, 0.8] range [32], [52]. The experience
effect is most profound in component manufacturing and
in satellite assembly [31]. Figure 22 shows the impact of
Wright’s law on marginal cost for several SµDC design
points assuming b = 0.75. The initial satellite design,
which includes NRE costs, is high, but the marginal costs
quickly decrease. By the time the 100th satellite is manu-
factured, cost has decreased by over 50%. In fact, the 100th
10 kW SµDC is cheaper than the first 4 kW SµDC. Wright’s
Law has also been applied to NRE. A recent review of F-
15 fighter jet procurement shows that experience models
such as Wright’s Law predicted decreases in research and
development costs for advanced models of the F-15 [55].



Figure 22: Satellite marginal cost vs number of satellites.

Figure 23: TCO (NRE and RE) vs # of satellites in
constellation with fixed target of 32 kW.

B. A TCO Case for Distributed Space Microdatacenters
In this work we motivate distributed in-space computing

using multiple SµDCs by quantifying its effect on TCO. We
will show that by using multiple small SµDCs, total cost
can be reduced relative to a monolithic, large SµDC.

The above results suggest that the total cost of own-
ership for a constellation of SµDCs increases sublinearly
with the size of the constellation. It is then worth asking:
what is impact on TCO of using multiple small SµDCs,
relative to a monolithic, large SµDC. I.e., to reach a target
compute power (32 kW, for example), should we build a
single 32 kW SµDC, 2× 16 kW SµDC, 3× 10.66 kW SµDC,
etc, to minimize the TCO?

Figure 23 shows the results for different values of the
Wright’s law progress ratio, or learning rate. NRE is
included in this analysis, and is thus amortized across
the number of satellites manufactured. For a pessimistic
progress ratio (0.85), a monolithic system minimizes TCO.
However, for all other progress ratios, a distributed system
of multiple SµDCs minimizes TCO. With an optimistic
ratio (≤ 0.65 — meaning costs scales by 0.65 for every
doubling of production), TCO is minimized at greater than
4 SµDCs, and with TCO over 10% below a monolithic
system.

VII. Near-Zero Cost Overprovisioning
Our TCO analysis (Figure 5) showed that the monetary

cost of compute as a fraction of TCO was insignificant (<
1%). This suggests that compute can be overprovisioned in
a SµDC at near-zero cost (as long as the excess compute is
kept powered off). This overprovisioning can then be used
to enhance a SµDCs’ availability.

Figure 24 shows that overprovisioning increases the
likelihood of full system availability. We model the lifetime
of each physical compute node as Xi ∼ Exp(λ) where
T = 1

λ is the mean time to failure. Assuming homogeneous
compute nodes, the Xi are independent and identically
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Figure 24: The likelihood that at least 10 servers work vs
time for overprovisioning factors.
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Figure 25: The expected number of working servers vs
time (capped at 10 due to power limits).

distributed. Let Yi(t) be the indicator function such that
Yi(t) = 1 if t < Xi, else 0.

Let Zn be a parametric family of continuous time ran-
dom processes for n ∈ N with n ≥ 10 such that Zn(t) = 1
if

∑n
i=1 Yi(t) ≥ 10, else 0.

Figure 24, then, shows the probability that Zn(t) = 1,
i.e., that at least ten physical nodes are still working, for
choices of 10 ≤ n ≤ 30. We note two main takeaways:
first, the median time to system degradation, that is < 10
nodes working, increases superlinearly with overprovision-
ing factor for small values of overprovisioning factor. With
ten physical nodes, the median time to system degradation
is 0.25T , but with 20 and 30 physical nodes, the median
time to system degradation is 0.8T and 1.25T respectively.
Second, the time at which probability of system degrada-
tion exceeds 99% also grows superlinearly: 0.46, 1.43, and
1.89 for n = 10, 20, and 30, respectively. Thus, at near-zero
cost, compute overprovisioning substantially increases the
time SµDCs will operate at full capacity.

Overprovisioning also assists in graceful degradation of
a SµDC’s capabilities. Let Z ′

n be parametric family of
continuous time random processes for n ∈ N with n ≥ 10
such that Z ′

n(t) = min {10,
∑n

i=1 Yi(t)}. That is, Z ′
n(t)

represents the number of compute nodes which are usable
by the SµDC at time t. Figure 25 depicts E[Z ′

n(t)] for
choices of 10 ≤ n ≤ 30. This shows that at all times,
overprovisioning provides significant improvement in the
expected computational power of a SµDC, even if this
amount is less than the BOL maximum.

In addition, near-zero cost overprovisioning can be used
for lifetime management. The computer hardware in a
SµDC can include both accelerators which are guaranteed
to be useful at the beginning of the satellite’s lifetime, and
general purpose, programmable computing systems. As the
satellite ages, and new applications emerge which cannot



be effectively supported on the accelerators, computing
is provided by the general purpose architectures. This
approach is enabled by the unique cost breakdown of a
SµDC, in which hardware capital costs are low relative to
overall TCO.

VIII. Reliability Implications
All our previous analysis assumed COTS hardware, not

radiation-hardened hardware. COTS hardware is strongly
preferable for SµDCs since radiation-hardened hardware
can have prohibitive costs. The bottom four rows of Ta-
ble II list four radiation hardened processors. As an illus-
trative example of the high costs of rad-hard hardware, the
rad-hard Virtex-5QV FPGA is 27× less energy-efficient
than H100 in an IEEE FP32 comparison. It is 405× less
efficient if the H100 utilizes its tensor cores with TF32
support.

The question then becomes: can COTS hardware meet
the reliability requirements of SµDCs? Or must we use
rad-hard hardware?

Radiation related effects on hardware are categorized
into long term, exposure based effects, also called total
ionizing dose (TID), and single event effects. As shown in
Table II, radiation hardened designs provide protection for
TIDs ≥ 100 krad(Si). This is especially useful for satellites
in GEO — such satellites often have long mission durations
and are located inside the outer van Allen radiation belt.
Computers in GEO protected by 200 mils of aluminum
shielding expect to see 4 krad(Si)

yr [71]. However, satellites in
non-polar LEO orbits typically see only ∼ 0.5 krad(Si)

yr with
200 mils of aluminum shielding, and this can be reduced
to only ∼ 0.2 krad(Si)

yr with 400 mils of shielding [48].
Further, LEO satellite lifetimes are often short — due to
atmospheric drag, LEO orbits will decay if satellites do not
periodically perform rocket burns. As such, lifetimes are
limited by the amount of stored rocket fuel. For example,
the LEO satellites of the Starlink constellation (which
make up a majority of all artificial satellites in orbit),
target an operational lifetime of five years [78].

Fortuitously, TID tolerance of mainstream (i.e., non-
rad hard) commercial technologies has been increasing
with technology scaling. Figure 26 shows TID tolerance
for several processors at different tech nodes. At 14 nm
tech node, processors can tolerate an order of magnitude
more radiation than would be experienced during an LEO
satellite’s lifetime. Newer commercial technologies provide
even higher resilience against permanent, destructive fail-
ures caused by high energy particles [23].

As such, LEO satellites are increasingly turning to non-
radiation hardened computers due to the high cost, poor
performance, relative scarcity of radiation hardened com-
ponents, and the more permissive radiation environment
of LEO. For example, Starlink satellites use a COTS
Xilinx SoC for their GDGPS navigation subsystem [14],
Dragon and Falcon 9 spacecraft use non-radiation hard-
ened x86 dual-core machines for their flight computers [20]

Figure 26: Total ionizing dose before failure [34], [36], [44],
[74], [79] (no failures for Intel Broadwell and AMD Llano).

(and in fact, use no radiation hardened computers at all,
despite being safety critical systems), the ESA’s ϕ-Sat-
1 hyperspectral imaging satellite uses an Intel Movidius
Myriad 2 VPU [29]. Further, many mission critical satellite
instruments use COTS hardware [24], [25]. Among many
other COTS computers, the ISS hosts the HPE Spaceborne
Computer 2 [35]. On Mars, the Perseverance rover uses
redundant Intel Atom SBCs (2× COMEX-IE38s) for its
image processing and data compression requirements of
its 23× cameras, while it uses a BAE RAD750 for crit-
ical tasks [84]. A similar design methodology is used in
commercial aircraft — highly reliable, low performance
flight control systems are paired with relatively high-
performance multimedia processors for passenger enter-
tainment systems. This split design also makes sense for
SµDCs — radiation hardened systems for flight control,
and non-radiation hardened systems for its application
processing payload. This is the reason COTS hardware was
assumed throughout our analysis.

Fig. 28 shows the impact of different reliability schemes
(triple modular redundancy (TMR), dual modular redun-
dancy (DMR), and software-based redundancy) on TCO
for equivalent computing power between 0.5 kW to 4 kW.
For TMR and DMR, we assume an overhead of 3× and 2×
respectively. A DMR scheme at 2 kW equivalent computing
power, for example, is assumed to consume ∼ 4 kW. For
software, we assume an overhead of 20%. This is conserva-
tive - ANNs are remarkably resilient to soft errors. Fig. 27
shows the impact of soft errors on image classification
using several different ANNs on ImageNet. This makes a
number of pessimistic assumptions, including that all soft-
errors result in an incorrect inference, and that soft-errors
never result in a correct inference. Previous work on hard-
ening ANNs [3], [73], [76], [88] has reported no more than
20% overhead. The results show that impact of hardware
redundancy-based solutions on SµDC TCO can be high
(again due to the impact also on power generation and
thermal subsystems). Software-based reliability solutions
have small cost in terms of TCO.

IX. Summary and Conclusions
This paper presented a system-level approach to ar-

chitecture of server-based computing systems in space
(SµDCs). We extended the SSCM cost model to include
computer hardware and support system costs for SµDCs,
revealing compute power as the primary TCO determinant
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Figure 27: The impact of soft-errors on ImageNet.

Figure 28: Relative TCO for different redundancy choices
for various levels of equivalent computing power.

with sublinear dependence. Factors like compute mass &
monetary cost, and communication have minor impact
on TCO. We showed that special-purpose, accelerator-
based architectures offer significant TCO advantages in
SµDCs compared to general-purpose architectures. Specif-
ically, the use of extremely heterogeneous designs (e.g.,
one accelerator per layer of a neural network) can re-
duce SµDC TCO by 116× in spite of their poor FLOPs

$
characteristics. In addition, we showed that the use of
collaborative compute constellations — constellations in
which EO satellites are also capable of doing some rudi-
mentary data filtering — further improves SµDC TCO
by 1.31 to 1.74×, a distributed architecture reduces TCO
by 10% over a monolithic architecture, and low monetary
cost of compute can be leveraged to provide near zero
cost compute overprovisioning which improve an SµDC’s
availability significantly and support graceful degradation.
Overall, this is the first paper on cost-aware architecture
and optimization of a SµDC.
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T. Schneiderhan, G. Platzeck, K. Kaku, M. K. Hazarika,
L. Czaran et al., “Global trends in satellite-based emergency
mapping,” Science, vol. 353, no. 6296, pp. 247–252, 2016.

[88] M. Wang, H. Qiu, L. Xu, D. Wang, Y. Li, T. Zhang, J. Liu, and
H. Li, “A case for application-aware space radiation tolerance in
orbital computing,” arXiv preprint arXiv:2407.11853, 2024.

[89] M. Wieland and S. Martinis, “A modular processing chain for
automated flood monitoring from multi-spectral satellite data,”
Remote Sensing, vol. 11, no. 19, p. 2330, 2019.

[90] M. Wieland, S. Martinis, R. Kiefl, and V. Gstaiger, “Semantic
segmentation of water bodies in very high-resolution satellite
and aerial images,” Remote Sensing of Environment, vol. 287,
p. 113452, 2023. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0034425723000032
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