
Exploiting Short Application Lifetimes for Low Cost
Hardware Encryption in Flexible Electronics

Nathaniel Bleiera, M. Husnain Mubarika, Suman Balajib, Francisco Rodriguezb,
Antony Soub, Scott Whiteb, and Rakesh Kumara

aUniversity of Illinois at Urbana-Champaign
bPragmatic Semiconductor

Abstract—Many emerging flexible electronics [1] applications
require hardware-based encryption, but it is unclear if practical
hardware-based encryption is possible for flexible applications due
to stringent power requirements of these applications and high
area and power overheads of flexible technologies relative to silicon
CMOS technologies. In this work, we observe that the lifetime of
many flexible applications is so small that often one key suffices
for the entire lifetime. This means that, instead of generating keys
and round keys in hardware, we can generate the round keys
offline, and instead store these round keys directly on the engine
post fabrication in an on-chip programmable read-only memory.
This eliminates the need for hardware for dynamic generation
of round keys, which significantly reduces encryption overhead,
while still allowing engines to have unique keys. This significant
reduction in encryption overhead allows us to demonstrate the
first practical flexible encryption engines. To prevent an adversary
from reading out the stored round keys, we scramble the round
keys before storing them in the ROM; camouflage cells are used
to unscramble the keys before feeding them to logic. In spite
of the unscrambling overhead, our encryption engines consume
27.4% lower power than the already heavily area and power-
optimized baselines, while being 21.9% smaller on average.

I. INTRODUCTION

Flexible electronics [1] promise conformality and dramat-
ically lower costs and have, therefore, seen an increased
recent interest [2], especially in the context of applications
with ultra-low-cost and conformality requirements that silicon-
based electronics cannot meet. Hardware-based encryption,
including strong encryption, is critical for many emerging
flexible applications (Table I), including applications in the
health domain. However, it is unclear if practical hardware-
based encryption is possible for flexible applications since a)
these applications often have stringent power requirements [2]
(e.g., many flexible applications may need to be self-powered,
a small 120 mm2 flexible battery provides a capacity of only
10 mAh [4], etc.) and b) flexible technologies have much higher
area and power overheads than silicon CMOS technologies [2].
The only previous work on hardware-based encryption for
flexible applications [5] had large area and high power (an
implementation of the simple 32 bit block size, 80 bit key
KTANTAN32 [6] encryption scheme took up 331 mm2!), mak-
ing it clear that implementing even simple encryption schemes
will be challenging in these technologies.

We observe that many flexible applications have a short life-
time and generate relatively small amount of data during their
lifetime [2]. This means that only a small number of keys may

be needed during the lifetime of the chip (Section III) - often
only one key suffices. This eliminates any need for dynamic key
generation or key expansion (that ‘expands’ the key into a larger
key schedule, or sequence of round keys). Instead the round
keys can be generated directly offline and programmed into the
engine. This simple optimization — eliminating key expansion
logic and replacing it by a key schedule ROM — reduces gate
count of encryption significantly since key expansion circuitry
is a significant fraction of encryption overhead (Section IV). For
us, key schedules are stored in laser programmable read-only
memories (LPROMs) which are programmed individually after
chips are fabricated. Thus each chip can be programmed with
unique key schedules. Since hardware is designed without any
knowledge of the key or the round keys, constant propagation
or other logic synthesis optimizations requiring knowledge of
the key schedule are inapplicable to this design. To the best
of our knowledge, no prior work on hardware encryption
eliminates key schedule generation and instead directly
stores the key schedule in the encryption engine. Closest
related work [6] stores the key in mask ROM, but still uses the
expensive key schedule generation logic. Also, use of mask
ROM has the disadvantage that different chips share the key
- so, all chips are rendered insecure if their shared secret (the
key) is exposed (through microscope-based visual inspection,
for example). For us, any exposure compromises only the
individual chip since the LPROMs are programmed individually
and not via lithography like a mask ROM. Further, active n-
type electronics made with indium galium zinc oxide (IGZO)
semicundoctor material supports sub-cent chip pricing [2],
meaning replacing a compromised chip is inexpensive (and
likely much cheaper than compromising the chip in the first
place).

For a set of encryption algorithms (AES [7], PRESENT [8],
Simon [9]), we show that encryption overhead can be reduced
by 26.6-78.6%, −5.6 to 46.2%, 19.9 to 47.0% respectively in
terms of gate count, area, and power through programming
key schedules (i.e., round keys) directly. These benefits are
over the already heavily area and power-optimized baseline
implementations. The proposed AES-128 design, for example,
requires only 1020 logic gates to implement, which is the
lowest gate-count AES-128 implementation to the best of our
knowledge. We fabricate and test three chip prototypes to con-
firm the benefits from eliminating key schedule generation and



demonstrate the first practical flexible encryption engines.
When we scramble the key schedule before storing it in the
ROM (to prevent an adversary from the reading the keys)
and use camouflaged cells to unscramble the key schedule
before feeding it to logic, our encryption engines consume
27.4% lower power than the already heavily area and power-
optimized baselines, while being 21.9% smaller on average, in
spite of the unscrambling overhead.
TABLE I: The number of keys needed for representative flexible
applications for block sizes of 32, 48, 64, and 128 bits while attempting
to keep probability of cipher text collision below p = 0.001. A single
key with 48 bit block size is sufficient for approximately half of the
applications, while a single key with 64 bit block size is sufficient for
all but a single application. Several applications are one-time use, and
thus a 32 bit block size suffices.

Applications Lifetime Sample Rate
(Hz)

Precision
(bit)

Throughput
(bit s−1)

Keys
32 / 48 / 64 / 128 bit

blocks

ECG sensor 12 - 48 Hours / Single Use 100 12 1200 2235 / 6 / 1 / 1
Blood Pressure Sensor 24 Hours / Single Use 60 8 480 447 / 2 / 1 / 1

Electronic Nose - body odor Hours - - - - / - / -
Heart Rate Sensor 12 - 48 Hours / Single Use 0.8 - 3.2 1 2 4 / 1 / 1 / 1

Body Temp. Sensor Single Use 0.1 - 1 8 4.4 1 / 1 / 1 / 1
Smart Bandage days 1 10 10 47 / 1 / 1 / 1

Sensor for PD detection 13-16 hours per day 14-20
Days / Single Use 50 - 100 13 650 8069 / 21 / 2 / 1

Oral-Nasal Airflow 2-4 Hours 16 - 25 8 164 26 / 1 / 1 / 1
Perspiration Sensor 2 Hours / Single Use 25 8 200 16 / 1 / 1 / 1

Pedometer 1 - 4 hrs 20 13 260 41 / 1 / 1 / 1
Human activity recognition 1 - 4 hrs 30 8 240 38 / 1 / 1 / 1

EEG sensor 8 Hours / Single Use 100-200 8 1200 373 / 1 / 1 / 1
Temperature Sensor (IoT/Biomedical) Days / Hours / Single Use < 1 8 8 23 / 1 / 1 / 1

Humidity Sensor Days / Hours / Single Use < 1 8 8 23 / 1 / 1 / 1
Shock Sensor Days / Hours / Single Use 30 8 240 671 / 2 / 1 / 1

Tilt sensor Days / Hours / Single Use 1-100 8 400 1118 / 3 / 1 / 1
Vibration Sensor Days / Hours / Single Use 30 8 240 671 / 2 / 1 / 1

Light Sensor Days / Hours / Single Use < 1 16 8 23 / 1 / 1 / 1
Accelerometer Days / Hours / Single Use 30 8 240 671 / 2 / 1 / 1

Wine quality sensor Days / Hours / Single Use 18.5 8 148 414 / 2 / 1 / 1
Gas identification depends upon use case 25 16 200 559 / 2 / 1 / 1
Pressure Sensor Days / Hours / Single Use < 1 8 8 23 / 1 / 1 / 1

Trace Metal Sensor Single Use 25 16 400 1 / 1 / 1 / 1

II. MOTIVATION

To understand the cost of implementing hardware-based
encryption in flexible technologies, we synthesized RTL im-
plementations of low-area AES, PRESENT, and Simon block
ciphers using Pragmatic’s experimental 3 V 0.6 µm IGZO TFT
technology library. A 0.8 µm version of this technology has
been used previously for characterization and fabrication of
several prior flexible processing engines [2], [3]. We extended
the standard cell library introduced in [2] with and-or-inverter
and or-and-inverter cells for our evaluations.

Figure 1 shows that area overhead of encryption is sig-
nificantly greater than 1 mm2 (over 4 mm2 for strong 128 bit
encryption schemes). All designs consume at least 1 mW,
except for the very weak 64 bit key version of Simon. All
128 bit baseline encryption engines consume at least 2 mW.
These overheads are concerning since commercial Blue Spark
flexible batteries [4] that support 10 mAh (2 mA peak current)
and 30 mAh (2 mA peak current) will support only a small
fraction of the desired lifetime for many applications in Table I
for a 2 mW encryption engine. One could choose a Molex [10]
90 mAh (20 mA peak current) flexible battery instead. How-
ever, this battery has a vastly larger area footprint (43.2 cm2!)
than the smaller battery - this footprint will be unacceptable
for many applications.

We also provide a breakdown of power and area between ‘en-
cryption’ and ‘key schedule’. The encryption portion consists of
the logic needed to compute the round function, including the
data block register, the round function logic, and the engine
controller. The ‘key schedule’ portion consists of logic to
generate the key schedule ‘on the fly’ (i.e., while running,

rather than computing and storing the full key schedule before
beginning encryption). We see that key schedule computation is
the majority of engine area and power consumption for Simon
and PRESENT, and a significant portion for AES.

Fig. 1: Area and power consumption of baseline lightweight im-
plementations of several block ciphers. AES-128 is a FIPS-197
compliant implementation of the Rijndael cipher using 128 bit blocks
and keys. PRESENT-80 and PRESENT-128 are implementations of
the PRESENT cipher (ISO/IEC 2167-11:2014) with 64 bit blocks and
80 bit and 128 bit keys, respectively. SimonX-Y are implementations
of the Simon cipher (ISO/29167-21) with X bit blocks and Y bit keys.

We focus on block ciphers rather than stream ciphers due
to their lower overhead. The internal state of a block cipher is
equal to the block size, while the internal state of stream ciphers
is often very large (e.g., 8288 bits for ISAAC, 19968 bit for
CryptMT, 65536 bit for HC-256, 1216 bit for MUGI, 576 bit
for SNOW 2.0, etc). Even ‘lightweight’ stream ciphers have
significantly more internal state than the block ciphers imple-
mented in this paper. E.g., Trivium has 288 bit, Salsa20 has
512 bit, etc. In comparison, the proposed AES-128 design has
140 bit of total state, including 12 bit used for its controller.
Although some stream ciphers with small internal states have
been used, these have been shown to be severely insecure (e.g.,
A5/1, A5/2, Crypto-1).

III. FLEXIBLE APPLICATIONS
REQUIRE FEW KEYS

The number of keys required by an application depends on
the amount of data it needs to encrypt during its lifetime and
is determined by the minimum number required to prevent a
birthday attack with sufficient likelihood. A birthday attack
is an attack on a block cipher which is enabled by ‘cipher
text collisions’ — when two different plain text blocks are
encrypted to the same cipher text block. For example, in the
basic electronic code book (ECB) mode, a collision reveals
that the related plain texts are equivalent, since ci = Ek (pi)
and thus ci = c j implies pi = p j. Likewise, in cipher block
chaining (CBC) mode, where ci =Ek (ci−1 ⊕ pi), ci = c j implies
ci−1 ⊕ pi = c j−1 ⊕ p j and thus pi ⊕ p j = ci−1 ⊕ c j−1. If all
of the cipher texts are stored, an adversary can thus extract
the XOR of the two plaintexts. Further, if using the counter
(CTR) mode of operation, where ci =Ek (Ci ⊕ pi) where Ci is an
incrementing counter concatenated with a secret nonce, cipher
text collisions enable distinguishing attacks which enable an
adversary to distinguish the cipher text from uniformly random
strings.

Figure 2 shows how much data can be transmitted using
a single key before the probability of a collision exceeds a
threshold as a function of block size. This is calculated by
the function d (p,b) =

√
2 ·2b log 1

1−p where p is the collision
threshold probability, b is the block size in bits, and d is the



number of blocks encrypted before the probability of collision
exceeds p. This formula is derived from a commonly used
exponential estimate of the probability of collision [11]:

p(d,b)≈ 1− e−d(d−1)(2·2b) ≈ 1− e−d2/(2·2b).
The figure shows that the number of keys needed is strongly

dependent on both the block size and the application’s resilience
to cipher text collisions. Table I shows the number of keys
needed for each application for various block sizes under the
strong assumption that probability of collision should be limited
to p = 0.001.

Fig. 2: Number of bits of data encrypted before the probability of
block collision exceeds p as a function of block size. Curves are based
on exponential approximation of collision likelihood.

We see that our example flexible applications need no
more than a single key for a 128 bit block size. All but one
applications need one key even for 64 bit block block size.
More keys are needed for smaller block sizes. The fact that only
a small number of keys are needed for flexible applications can
be leveraged to significantly reduce encryption costs.

IV. EXPLOITING SMALL NUMBER OF KEYS
FOR REDUCED ENCRYPTION OVERHEAD

Since only a small number of keys are needed (no more than
one for block sizes of 64 and 128), there exists a surprisingly
simple, but effective opportunity. It is no longer essential to
generate keys (or round keys) online using key expansion logic
that today’s encryption engines have. Instead round keys can be
generated offline and directly programmed into an on-chip ‘key
schedule ROM’ post fabrication. Since key expansion overhead
is high (Figure 1), replacing this key schedule generating
hardware by a ‘key schedule ROM’, which stores the entire
key schedule could lead to significant reduction in encryption
overheads, while still allowing individual chips to have unique
keys.

Figure 3 shows the relative area and power of encryption
engines with key schedule stored in a laser-programmed ROM
(LPROM) (charactersitics in Table II) vs generated online using
dedicated key schedule generation hardware.
TABLE II: Measured characteristics of IGZO-TFT LPROMs. The
power and area for the peripheral logic and LPROM are based on a
512 bit LPROM with 64× 8 bit words.

Area (µm2) Power (µW)

Bit Cell 328.91 0.33
Read Power bit−1 - 2.81
Peripheral Logic 162130 225
LPROM (512 bit) 330531 394

We see significant area and power benefits from this simple
optimization (> 25% area reduction and > 30% power reduc-
tion, on average). Recall that these benefits are reported over the
already heavily area and power-optimized baseline implemen-
tations. An LFSR can be used to throttle transmissions in the

event that the device lifetime exceeds the expected application
lifetime.

We note that using a small, fixed number of keys increases
susceptibility to other cryptanalytic attacks which require col-
lecting large amounts of cipher text data generated by a single
key. However, such attacks typically require collecting more
data than the birthday bound itself. For example, the best
published attack on AES-128 has time complexity of 2126.18

and space complexity 288 [12]. Thus, storing sufficient number
of keys to ameliorate birthday attacks is sufficient to prevent
many other cryptanalytic attacks.

Fig. 3: Relative area and power of encryption engines with key
schedule implemented in LPROM vs with dedicated key expansion
hardware.

V. ARCHITECTURES

Architectures for the proposed AES-128, PRESENT, and
Simon encryption engines (with their key expansion logic
replaced by a key schedule ROM) are shown in Figure 4.

Figure 4a depicts Simon’s architecture, which implements a
single instance of Simon’s round function. As a Feistel cipher,
Simon splits its data block into ‘L’eft and ‘R’ight halves. Each
cycle, a single round is executed which shifts the R register into
the L register, and loads the R register with a simple function
of the L register and the key schedule.

Figure 4b depicts PRESENT’s datapath. In order to minimize
cell count, PRESENT is serialized to 4 bit, the maximum
serialization allowed by its substitution function (SBox). Each
round consists of 16-cycles in which the four most significant
bits of the block register, D, are summed with the key schedule
(XOR), then substituted through the SBox, and then shifted
back into the least significant bits of D. After these 16 cycles, a
single cycle is used to perform PRESENT’s permutation, which
simply permutes all of the 64 bits in the data block.

Figure 4c depicts AES-128’s datapath. Like with PRESENT,
the datapath is maximally serial, with most operations acting
on a single octet. The data block is depicted broken into
four columns of four octets. Depending on the stage of AES-
128 execution (i.e., AddRoundKey, SubBytes, ShiftRows, Mix-
Columns) one of several dataflows are used. During AddRound-
Key, data from octet a0,3 is added with key schedule data, and
the sum is routed into a3,3, while the rest of column three is
vertically rotated. After an entire column has been summed



with the round key, the black and dashed routes (to bypass
MixColumns) are used. A similar dataflow occurs for SubBytes.
MixColumns acts on an entire column at once, and its dataflow
is shown with the solid black lines. ShiftRows uses the solid
and dashed black routes.

VI. PROTOTYPING RESULTS

To both confirm the benefits from eliminating key expansion
logic and to demonstrate the first practical encryption engines
in a flexible technology, we designed and fabricated prototypes
of AES-128 (128 bit block and key sizes), PRESENT (64 bit
block size, 80 bit or 128 bit key sizes), and Simon (48 bit block
size, 96 bit key size) on 9 mm2 dies using Pragmatic’s 0.6 µm
IGZO-TFT technology. We only had a 512 bit LPROM macro
available during fabrication, so multiple LPROMs were needed
to store the key schedules.

Table III shows the area of logic and LPROM of the
prototyped encryption engines. Both of the lightweight block
ciphers (Simon, PRESENT) use fewer than 500 cells and take
area < 1.25mm2. AES-128 is significantly larger, at 1715 cells
and > 3.7mm2. However, the control and datapath components,
excluding the SBox which can be encoded into LPROM, uses
only 1020 cells and 2.65 mm2 area.

TABLE III: Cell count and area of prototypes after SP&R.

Area (mm2)
Engine NAND2 Equiv. Logic LPROM Total

AES-128 2576 3.71 0.93 4.64
AES-128 (no SBox) 1840 2.65 2.17 4.82
PRESENT 868 1.25 1.24 2.49
Simon48-64 854 1.23 0.62 1.85

The prototype dies were all manufactured on a single 200 mm
polyimide wafer. After fabrication, chips were tested on a
semi-automated wafer probe station MPI TS2000 while still
attached to a glass carrier. Yield is not significantly affected
when chips are removed from the carrier. Test patterns derived
from SystemVerilog simulation were translated to input signals
generated by a NI PXIe-6570 Digital Pattern Instrument. Output
signals, captured by the same instrument, were compared
against the SystemVerilog simulation outputs. The chips were
tested with LPROMs storing key schedules from published test
vectors for the ciphers. The tests consist of encrypting several
plain text blocks (including published test vectors) several
times. We consider a chip to yield if there is an average of
less than one error per block encrypted. A small number of
errors, n, can be handled by encoding a checksum or nonce
into each plain text block. If the decrypted cipher text does
not contain that checksum or nonce, then the decrypter can
decrypt a small number of related cipher texts whose Hamming
distance from the error-prone cipher text is ≤ n. Thus, small
number of errors does not prevent the encryption engines from
being used practically. The chips were tested at 3 V and 4.5 V.
Simon yields 70% and 71% at 3 V and 4.5 V respectively, with
all working chips having 0 errors. PRESENT yields 38% and
51% at 3 V and 4.5 V, with several dies being error-free. AES-
128 yields 47% at both 3 V and 4.5 V with all working chips
being error-free. It is expected that yields will be improved

following optimization of the 0.6 µm technology, which is an
experimental process node at time of wafer production.

At 3 V, Simon current draw is under 1 mA and is on average
0.6 mA, increasing to an average of 1 mA at 4.5 V. Average
current draw for PRESENT is 0.7 mA and 1.1 mA at 3 V
and 4.5 V respectively. Thus, at 3 V, the prototyped Simon48-
96 engines draw only 1.8 mW on average, while PRESENT
draws only 2.1 mW. The AES-128 prototype draws 4.5 mW on
average at 3 V. Even these small numbers are, in fact, artificially
high in the prototypes. Since the LPROMs in Simon and
AES-128 (PRESENT) is currently broken between three (four)
macros, each macro duplicates expensive peripheral logic which
accounts for the majority of the LPROM’s power consumption.
Storing the key schedules in a single larger LPROM would thus
lead to significant power savings.

Our PRESENT, Simon, and AES-128 prototypes are the
first demonstration of practical encryption engines in a flexible
technology, and can be used with numerous block cipher modes
of operation, including ECB, CBC, PCBC (for encryption
only), and GCM, CTR, CFB, and OFB (for encryption and
decryption).

VII. KEY SCHEDULE PRE-SCRAMBLING

Flexible technologies have coarse feature sizes (0.6 µm for
our evaluations) which may enable an adversary to read the
stored key schedules using a microscope (Figure 6), thereby
compromising security.

To deal with the above vulnerability, we pre-scramble the
key schedule before storing in on-chip LPROM. On-chip un-
scrambling logic built using camouflage cells [13] is used to
unscramble the key schedule before it is used by the encryption
pipeline. In addition, key schedule can be chosen randomly
(e.g., from a uniform distribution) to maximize security.

Figure 7 shows the unscrambling hardware for a hypothetical
system with 32 bit key schedule and an 8 bit datapath. Scram-
bled key schedule data is read from the LPROM (L7, . . . ,L0)
and broadcast to four 8bit arrays of camouflaged cells. The
camouflaged cells, which are functionally either XOR2 or
XNOR2, have one input tied to VDD and the other to the
appropriate broadcast signal. Hence the camouflaged cells are
wired to act as either buffers or inverters, and the output of
each array is unknown to an adversary, even when the contents
of the LPROM are known. The four camouflaged buses are
then multiplexed by the subround key mux, whose output is
the unscrambled 8 bit subround key.

Figure 8 gives the power and area overheads for key schedule
unscrambling hardware for combinations of key size and dat-
apath width (we estimate 1.5x overhead for camouflage cells).
Table IV shows the power, area, and energy per encrypted block
for different block ciphers when both replacing key expansion
logic and key unscrambling hardware is supported. In spite of
the unscrambling overhead, our encryption engines consume
27.4% lower power than the power and area-optimized base-
lines and are 21.9% smaller.

Physical unclonable functions (PUFs) are an alternate ap-
proach to securely storing keys on IoT devices, but often
require high overhead error correction coding (ECC) due to



(a) Simon (b) PRESENT
(c) AES-128

Fig. 4: Architectures for Simon, PRESENT, and AES-128.

(a) Simon48-96 Die (b) PRESENT Die
(c) AES-128 Die

Fig. 5: Die photos of the three prototyped encryption engines.

Fig. 6: Our in-house optical inspection revealed the data stored in
LPROM.

Fig. 7: Key Schedule Unscrambling Hardware

variability in PUF output (high variability exists for flexible
electronics [17]) - securely storing a 128 bit key with high
reliability may require thousands of stored bits due to the
ECC overhead [16]. This overhead would be unacceptable for
flexible applications. In fact, actual overhead for us would be
much higher since we directly store not key, but key schedule,
which is typically much larger.

Even disregarding ECC overheads, PUF overheads may be
high for securely storing key schedule. Since delay-based
PUFs outputs only a single bit, either a large number of
PUFs would be needed, or the block ciphers would need
to be bit-serialized, presenting a significant trade-off between
area and performance/energy. This is especially significant in
Simon, since Simon’s round-function is designed to support
inexpensive single-cycle execution. Thus, Simon would require
block size

2 PUFs to maintain its performance characteristics. We
estimate that using 24× arbiter PUFs would add > 80% logic
area overhead to the fabricated Simon48-96 design.

Fig. 8: Area and power overhead of key schedule unscrambling
hardware. Columns for X-Y refer to encryption engines with
X bit keys and Y bit datapaths (e.g., AES-128 implementation
is 128-8).

VIII. SYSTEM-LEVEL IMPACT

To estimate system level (Figure 10) benefit of replacing key
expansion logic with key schedule ROM, we consider three
different flexible system configurations, System01-System03.
System01 adds a flexible encryption engine to a flexible RFID
chip [14]. System02 adds a flexible gas sensor [15] to system01.
System03 adds a flexible microprocessor [2] to System02.
The power consumption of different flexible components of
the systems is presented in Table V. Power consumption of
the encryption engines with and without optimizations are in
Figure 1 and Table IV respectively. Once we have the total
power consumption of the baseline and the optimized systems,
we calculate the time for which a system can be powered by a
given battery assuming that all the components of the system
are always active. Figure 9 shows that, on average, the lifetime
is increased by 27.05%, 26.07% and 18.94% for system01,



TABLE IV: Power, area, and latency of AES-128, Simon, and
PRESENT block cipher implementations with KS ROM and Key
Schedule Pre-scrambling applied. Percentage difference is against
baselines with neither KS ROM nor Key Schedule Pre-scrambling.
Latency (Cycles) Area Power Energy

Cipher mm2 % ∆ mW % ∆ µJ % ∆

512 AES-128 4.31 -6.7 1.67 -20.4 85.3 -20.4
527 PRESENT-80 2.63 23.1 .95 -8.2 50.14 -8.2
527 PRESENT-128 2.71 -3.5 .97 -28.3 51.13 -28.3
32 Simon32-64 1.31 -10.3 .64 -11.3 2.06 -11.3
36 Simon48-72 1.54 -26.5 .84 -21.5 3.03 -21.5
36 Simon48-96 1.6 -26.1 .86 -21.3 3.1 -21.3
42 Simon64-96 1.88 -32.4 1.03 -26.5 4.35 -26.5
44 Simon64-128 2. -30.6 1.05 -26.7 4.64 -26.7
52 Simon96-96 2.45 -38.8 1.29 -36.4 6.7 -36.4
54 Simon96-144 2.71 -32.2 1.35 -33.2 7.3 -33.2
68 Simon128-128 3.52 -33.4 1.58 -39.8 10.75 -39.8
69 Simon128-192 3.09 -41.6 1.42 -45.7 9.83 -45.7
72 Simon128-256 4.08 -25.3 1.7 -36.7 12.25 -36.7

TABLE V: Power consumption of the non-encryption components
of the systems under study.
Component Description Power uW

RFID [14] An a-IGZO TFT-based RFID chip 20
FlexiCore4 [2] A low gate count flexible microprocessor 700
Sensor [15] A gas detection sensor 65

system02 and system03 respectively through the use of our
optimization.

IX. SUMMARY AND CONCLUSIONS

Many emerging flexible electronics applications require
hardware-based encryption. However, it is unclear if hardware
encryption engines can be developed at an acceptable overhead
for flexible technologies due to high area and power overhead
of such technologies. In this work, we presented a simple,
but extremely effective optimization - eliminating key schedule
generation logic and replacing it by a laser programmable
key schedule ROM storing a small set of round keys, often a
singleton set - enabled by short lifetime and low data emission
rate of flexible applications. This optimization significantly
reduces encryption overhead while allowing individual chips to
have programmable unique keys, and allows us to demonstrate
the first practical flexible encryption engine chip prototypes.

Fig. 9: Percentage increase in the lifetime of different systems due
to the proposed encryption engine optimizations.

Fig. 10: An example flexible system encrypts processed
biomedical data and then transmits the encrypted data.

To hide the stored key schedule from adversaries, we scramble
the key schedule offline before being stored in the ROM, while
camouflage cells are used to unscramble the key schedule
before feeding it to logic. Our key schedule ROM-based en-
cryption engines consume 27.4% lower power than the power
and area-optimized baselines and are 21.9% smaller in spite
of the unscrambling overhead.

X. ACKNOWLEDGMENTS

We thank Emre Ozer from Pragmatic Semiconductor for help
with AES-128 prototyping results, reviewers for their feedback,
and NSF (CCF-2006763) for their partial support.

REFERENCES

[1] W. Wong and A. Salleo, “Flexible Electronics: Materials and Applica-
tions”, Springer Science & Business Media, New York, NY, USA, 2009.

[2] N. Bleier et al., “FlexiCores: low footprint, high yield, field repro-
grammable flexible microprocessors”, Proceedings of the 49th Annual
International Symposium on Computer Architecture, pp. 831–846, June
2022.

[3] J. Biggs et al., “A natively flexible 32-bit ARM microprocessor”, Nature
595.7868 (2021), pp. 532-536.

[4] Blue Spark Technologies, “Thin-Film Battery”, 2015.
[5] N. Mentens et al., “Security on Plastics: Fake or Real?”, IACR Trans-

actions on Cryptographic Hardware and Embedded Systems, pp. 1–16,
August 2019.

[6] C. Cannière and O. Dunkelman and M. Knežević, “KATAN and KTAN-
TAN—a family of small and efficient hardware-oriented block ciphers”,
International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pp. 272–288, September 2009.

[7] M. Dworkin et al., “Advanced Encryption Standard (AES)”, Federal
Inf. Process. Stds. (NIST FIPS), National Institue of Standards and
Technology, November, 2001.

[8] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher” Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
pp. 450–466, September 2007.

[9] R. Beaulieu et al., “The SIMON and SPECK Lightweight Block Ciphers”,
Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6,
June 2015.

[10] Molex, “Molex - Thin-Film Battery”,
[11] M. Sayrafiezadeh, “The Birthday Problem Revisited”, Mathematics Mag-

azine, pp. 220–223, June 1994.
[12] A. Bogdanov and D. Khorvratovich and C. Rechberger, “Biclique crypt-

analysis of the full AES”, International Conference on the Theory and
Applicatoins of Cryptology, pp. 344-371, December, 2011.

[13] R. Cocchi and J. Baukus and L. Chow and B. Wang, “Circuit camouflage
integration for hardware IP protection”, 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–5, June 2014.

[14] H. Ozaki and T. Kawamura and H. Wakana and T. Yamazoe and H.
Uchiyama, “20 µW operation of an a-IGZO TFT-based RFID chip using
purely NMOS active load logic gates with ultra low consumption power”,
2011 Symposium on VLSI Circuits - Digest of Technical Papers, pp. 54–
55 2011.

[15] V. Misra et al., “Ultra-low power sensing platform for personal health and
personal environmental monitoring”, 2015 IEEE International Electron
Device Meeting, pp. 13.1.1–13.1.4, December, 2015.

[16] C. Bösch, and J. Guajardo and A. Sadeghi and J. Shokrollahiand P.
Tuyls, “Efficient helper data key extractor on FPGAs”, International
workshop on cryptographic hardware and embedded systems, pp. 181–
197, September 2008.

[17] A. Erozan et al., “Inkjet-printed EGFET-based physical unclonable func-
tion—Design, evaluation, and fabrication”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 2935–2946, 2018.


