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ABSTRACT
While smell is arguably the most visceral of senses, olfactory com-
puting has been barely explored in the mainstream. We argue that
this is a good time to explore olfactory computing since a) a large
number of driver applications are emerging, b) odor sensors are
now dramatically better, and c) non-traditional form factors such as
sensor, wearable, and xR devices that would be required to support
olfactory computing are already getting widespread acceptance.
Through a comprehensive review of literature, we identify the key
algorithms needed to support a wide variety of olfactory comput-
ing tasks. We profiled these algorithms on existing hardware and
identified several characteristics, including the preponderance of
fixed-point computation, and linear operations, and real arithmetic;
a variety of data memory requirements; and opportunities for data-
level parallelism. We propose Ahromaa, a heterogeneous architec-
ture for olfactory computing targeting extremely power and energy
constrained olfactory computing workloads and evaluate it against
baseline architectures of an MCU, a state-of-art CGRA, and an MCU
with packed SIMD. Across our algorithms, Ahromaa’s operating
modes outperform the baseline architectures by 1.36, 1.22, and 1.1×
in energy efficiency when operating at MEOP. We also show how
careful design of data memory organization can lead to significant
energy savings in olfactory computing, due to the limited amount
of data memory many olfactory computing kernels require. These
improvements to the data memory organization lead to additional
4.21, 4.37, and 2.85× improvements in energy efficiency on average.
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1 INTRODUCTION
Arguably the biggest development in computing in the last few
decades has been the advent and proliferation of sensor driven
computing [72]. Use of image, health, audio, and other sensors have
resulted in novel computing platforms such as wearables [8, 10, 101],
head mounted displays [6, 62], and smartphones [104], and novel
computing applications such as health and wellness tracking [15],
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Figure 1: An overview of olfactory computing applications, form-
factors, and sensors & actuators.

digital navigation [120], and extended reality [60]. Indeed, each
new class of sensors can potentially enable new applications and
generate new computational requirements.

One class of sensor data processing that has been barely explored
in the mainstream is olfactory computing. Smell has always received
scant recognition [100], and has historically been considered an
inferior sense [100], in spite of arguably being the most visceral
of senses [109]. Biological understanding of odor has also been
relatively recent [11]. Previous attempts at olfactory computing, in
the form of e-noses [68], for example, have seen limited success [96,
105], discouraging further research and adoption; some attempts
have indeed been publicly ridiculed [105]. Finally, odor sensors that
olfactory computing would rely on have historically been highly
inaccurate, power hungry, and slow [126]; pumps and cartridges
required for any odor synthesis [3, 9, 12, 16, 117] application have
been similarly big, slow, and power hungry [4, 83, 107].

In spite of the checkered history, we believe that this is a good
time to revisit olfactory computing. A large number of driver ap-
plications are emerging that would require or benefit from olfac-
tory computing. Low cost healthcare (e.g., smart bandages for in-
fection detection [37]) and personal hygiene applications (body
odor detection [63–65, 127]), for example, could benefit greatly
when augmented with odor sensing and synthesis. Second, there
have been dramatic recent advances in odor sensing technology,
with some modern odor sensors demonstrating high accuracy,
miniaturized to the micron scale, and consuming no more than
low tens of µW of power (Fig. 2). There have been similar ad-
vances in NEMS/MEMS-based micropumps and cartridges [117].
Third, widespread acceptance of sensor, wearable, and xR devices
over the last decade, including recent interest in odor-based wear-
able [9, 12, 16, 17, 20, 95, 117] and xR [109] devices, suggests a much
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easier path of adoption for olfactory computing-based applications
than ever before - overlaid on these devices. This vision of olfac-
tory computing is depicted in Fig. 1 which shows example odor
applications, form factors for olfactory computing-enabled devices,
and odor sensors and actuators.

Of course, to build olfactory computing systems, we must un-
derstand and analyze characteristics of odor-based applications.
In this work, through a survey of research literature and recent
practice, and conversations with olfaction experts, we first identify
a set of computation tasks that may be common across a variety
of odor-based applications (Sec. 2). We then identify, through a
survey of papers discussing implementations of these tasks, a set
of algorithms that often underpin these tasks (Sec. 2). We then un-
derstand through profiling-based measurements the computational
characteristics of these algorithms (Sec. 3). An understanding of
these characteristics can be used to build and optimize olfactory
computing systems for different system-level constraints.

As a case study, we consider the architecture of a programmable
olfactory computing hardware platform in the context of sensor and
wearable applications with extreme power and energy constraints.
Programmability may be essential in this context to lower costs and
to maintain generality in a domain where applications are likely to
evolve.

We observe (Sec. 3) that a programmable architecture for olfac-
tory computing needs to support efficiently a) fixed-point multiply-
accumulates and activations for various quantization levels, which
are needed for many algorithms supporting olfactory tasks – many
olfactory workloads are ANN-based or otherwise use linear al-
gebraic kernels, b) general purpose and dataflow computation to
support a variety of algorithms such as principal component analy-
sis, K-Means, orthogonal matching pursuit, and particle filtering
which are common across tasks, including support for computation
kernels admitting data level parallelism, such as matrix decompo-
sitions, matrix multiplication, and limited non-linear scalar and
serial operations such as exponentiation, square root, and division,
and c) a configurable memory system to support “small data" algo-
rithms, which, in the context of olfactory computing, include linear
discriminant analysis, k-nearest neighbors, and support vector ma-
chines.We present Ahromaa - Aheterogeneous reconfigurable odor
monitoring and analysis architecture (Sec. 4) - that consists of a
general purpose RISC-V core, a packed SIMD unit, and a CGRA sup-
porting 4, 8, 16, and 32 bit fixed point arithmetic as a programmable
platform for olfactory computing. Ahromaa is used in conjunction
with a variety of memory configurations to deliver high energy
efficiency on olfactory computing workloads (Sec. 6).

This paper makes the following contributions:

• A comprehensive review of the olfactory computing litera-
ture, identifying key algorithms needed to support a wide
variety of olfactory computing tasks.

• Analysis of these algorithms within the context of olfactory
computing (e.g., input and model sizes, performance and
system constraints, and sensor array designs are all relevant
in the analysis of common algorithms such as artificial neural
networks in the olfactory context).

• Design and evaluation of Ahromaa — a heterogeneous archi-
tecture for olfactory computing — the first sensor processor

Figure 2: Odor and chemical sensors continue to improve in power,
area, and response times.

Table 1: Examples of olfactory computing applications and
their constraints.

Application Constraints

Food Freshness Monitoring ≤ mW, lifetime of hours - months
Food Spoilage Detection ≤ mW, lifetime of hours - months
Personal Hygiene Monitoring low mW, lifetime of ≤ day
Wearable Body Odor Detection low mW, lifetime of days
Odor Biometric Authentication lifetime of months-years
Odor Biometric Forensics field deployable & single use
Smart-Bandage infection detection < mW, lifetime of hours - days
Air and water quality monitoring < mW, lifetime of months - years
Dangerous compound detection lifetime of days-years
Explosive detection lifetime of days-years
Gas Leak Tracing requires spatial dispersed sensors, lifetime of minutes to hours
Odor Cancellation requires odor synthesis
Bespoke clothing deodorization requires odor synthesis
Olfactory enabled xR requires odor synthesis
Food & Scent recommendation
COPD & Lung Cancer Screening

designed for the unique constraints and limitations of olfac-
tory computing.

• Description and evaluation of optimizations to Ahromaa’s
data memory organization which provide significant im-
provement to Ahromaa’s energy efficiency at its minimal
energy operating points.

2 OLFACTORY TASKS AND ALGORITHMS

Figure 3: Human vs computerized olfactory systems.
The human olfactory system transduces chemicals into electrical

signals in the olfactory epithelium. Signals are then broadcast to
a number of different parts of the brain, which enable autonomic
nervous system responses, and can conjure memories and enable
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learning. This is mimicked in an odor sensor processor, where
chemical sensor arrays transduce chemicals into odor signals which
are sent to a compute element to execute odor related tasks (Fig. 3).

To build olfactory computing systems, we must understand and
analyze the computational tasks underpinning odor-based applica-
tions. To identify a set of computation tasks that may be common
across a variety of odor-based applications, we surveyed 25 papers
published in last 10 years on odor-based applications in Table 1 - at
least one paper on each application was found. We identified the
computational task(s) each paper was focused on. We also surveyed
10 odor-based electronic products in last five years and identified
the corresponding computational task(s). Finally, we interviewed
three olfaction experts and asked them for a list of computational
tasks. We then created a list of tasks that appeared in at least two
of the above three lists.

2.1 Tasks
The tasks in our finalized list are odor localization, odor classifica-
tion, odor authentication, odor similarity, active odor cancellation,
odor pleasantness estimation, and odor demixing.

Odor classification, as the name suggests, is the task associ-
ated with identifying the source of an odor. Odor classification
uses machine learning and statistical techniques to map chemical
sensor readings to source odorants [59, 67]. Odor classification
has many commercial, industrial, agricultural, medical, and secu-
rity applications [88, 131] [28, 36, 114, 116], [23, 38, 74, 125], [81]
[22, 42, 47, 118], [26, 80, 113]. Odor classification is performedwith a
variety of machine learning and statistical analysis techniques such
as principal component analysis (PCA), support vector machines
(SVM), artificial neural networks (ANN), and K-Means cluster anal-
ysis (KMeans).

Biometric authentication using odor, or, odor authentication,
is the olfactory equivalent of fingerprint, facial, iris, or voice au-
thentication techniques which are currently in vogue on mobile
devices [110]. Individual humans have an identifiable scent due
to genetic and environmental factors [94], and many studies have
shown successful discrimination of individuals’ body odor using
chemical sensor data [63, 64, 127]. Odor authentication consists
of first extracting features from chemical sensor data, often using
parametric machine learning techniques, and then comparing those
features to a user dictionary. Algorithms in odor authentication
include PCA, SVM, ANN, K-Means, and KNN.

In the odor similarity task, the goal is to estimate the odor similar-
ity of two different chemical mixtures. Traditionally, this has been
done by first identifying the chemical structure of the mixtures’
constituent chemicals via gas chromatography-mass spectrometry
(however, it can also be done with sensor data). These chemical
structures are then mapped to fixed length vectors from an inner
product space, and then the mixtures are represented by weighted
sums of the constituent chemical vectors. Finally, the similarity of
the two chemicals is scored based on the angle between the two
vectors (AngleDist) [106].

Active odor cancellation is the olfactory equivalent of active
noise cancellation. Active odor cancellation attempts to ‘block out’
one or more malodors in an environment by adding odors which
cancel the malodor, rendering it as olfactory white noise [119]. The

algorithm which determines how much of each odor to add to the
environment consists of solving a quadratic program which, in
many cases, is convex. As such, gradient descent based optimiz-
ers may be used to find local, and often, global solutions to the
optimization problem.

The pleasantness of an odor is highly dependent on the physical
properties of the odorant molecular structure [19]. As such, odor
pleasantness estimation is assigning a value (either numeric or cat-
egorical) to a chemical corresponding to its predicted pleasantness.
This has been achieved using PCA and SVM [77, 78, 102].

Odorants exist in mixtures, including time-evolving mixtures,
yet often only one chemical odorant is of interest. Odor demixing
is the task which isolates the signal corresponding to the chemical
of interest. Compressive sensing, namely, orthogonal matching
pursuit (OMP), has been shown to be useful in the olfactory domain
since individual odors are sparse within the large space in which
an odor can be represented.

Odor localization is the task of identifying the source location
of an odorant ‘plume’ within an environment. Biology inspired
methods, as well as probabilistic methods such as particle filtering
are commonly used in conjunction with a model of plume dynam-
ics [121]. While odor localization is typically performed by either a
mobile field robot [32], or by a distributed sensor network [56], as
odor localization benefits from taking chemical readings in multi-
ple locations throughout the environment, we also consider future
applications where a wearable aids a moving human or an animal
in identifying an odor source (gas leak or fire source, for example).

2.2 Algorithms
For identifying key olfactory kernels and their characteristics, we
use systematic-style review [18], a scholarly synthesis methodol-
ogy common in fields such as health sciences to reduce bias. A key
step in systematic-style review is to use keywords to index into
a research database to find the relevant studies for further anal-
ysis. We use keywords for different olfactory tasks to index into
Google Scholar to find the most well-cited papers about those tasks
- these papers are then analyzed to identify the key algorithmic
kernels used in those tasks and their typical input sizes and rates,
implementations, and performance requirements.

• Select a keyword for each given olfactory computing task.
• Collect the top 50 most relevant papers returned by Google
Scholar for the selected keyword.

• Sort the papers by the number of citations per year.
• Take up to the top ten relevant papers from this list.
• Any algorithm that is used two or more times in these papers
is added to the list of algorithms for the corresponding task.

• Algorithmic metaparameters (e.g., neural network architec-
tures, dimensionality, etc.) are taken by using themost heavy-
weight version of the algorithms found in the search (see
Table 2). In one case, metaparameters are determined by
memory availability on the baseline architecture (i.e., the
number of particles used in particle filtering).

Fig. 4 is a graphical depiction of the relationship between olfac-
tory computing applications (hexagons), the tasks (ellipses) from
which the applications are composed, and the computational ker-
nels (rectangles) which can be used to implement the task. Some
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Figure 4: Graphical depiction of relationship between applications
(hexagons) which are composed from tasks (rectangles). Tasks are
implemented using a computational kernel (ellipses). Some tasks
can be supported by multiple kernels.

tasks may be implemented using one of several kernels, such as
odor classification which can be supported by several machine
learning and statistical analysis techniques. Below we describe the
nuances of implementation of the identified computational kernels
in context of olfactory computing.

Particle filtering (PF) is an iterative statistical, Monte Carlo
method used in odor source localization. The particle filter consists
of a collection of ‘particles’. The particles are assigned a location in
the environment and a weight. Initially, the particle locations are
chosen at random, and the weights are of each particle are equal
and sum to one. Each iteration consists of 1) sampling the odor
sensors, 2) updating the particle weights, 3) removing particles
with low weights, 4) splitting particles with high weights, and 5)
replacing some particles at random. If a particle gets sufficiently
high weight, the particle filter terminates, and the location of the
particle is determined to be the location of the odorant source. The
key idea is that the weights are updated based on the likelihood
that the source is at the position of the particle given the sequence
of sensor readings and a dynamical model of the odorant plume.

Principal component analysis (PCA) is an unsupervised statisti-
cal analysis algorithm, commonly used for dimensionality reduction
and feature extraction for sensor-based applications. For olfactory
computing applications, due to the slow rate at which odorant mix-
tures change, the number of data points, 𝑑 , in the analysis is limited
to the low hundreds, while the number of sensors in a sensor ar-
ray is often less than ten. Thus PCA requires normalizing only
a small number of distributions with a small number of samples,
and performing eigen decomposition on a small correlation matrix.
Similarly, in the odor context, finding the principal components of
a sensed input (PCA-Inf) requires only multiplying the input by a
small 𝑛 × 𝑛 matrix.

Linear discriminant analysis (LDA) is a supervised statistical
analysis algorithm which can be performed offline. For field ol-
factory computing applications, LDA consists of applying linear
transformations to sensor data, and then assigning a class based on
the linear transformation. As such, LDA is extremely light weight,
with time and space complexity quadratic and linear, respectively,
in the number of sensors in the sensor array.

The support vector machine (SVM) works by finding a hyper-
plane which separates the classes of data. Thus, determining if a
sample belongs to class 0 or class 1 is as straightforward as deter-
mining which side of the hyperplane the sample lies by performing
a linear transformation on the sample. In olfactory computing,
the input sample is a vector of sensed values from the chemical
sensor array. Thus, the complexity of running the support vector
machine is the same as computing the principal components or
linear discriminants of the input. Multiclass classifiers are built out
of multiple SVMs with a voting mechanism.

Artificial neural networks (ANN) have been shown to be effec-
tive models for odor classification and odor biometrics. The most
prominent type of ANN seen in olfactory computing is the mul-
tilayer perceptron (MLP), in which each layer is fully connected.
The input to the MLP is typically the sensed data directly, with no
preprocessing steps involved (consider, for example, that there is no
need for preprocessing to help the model learn high-frequency con-
tent, as there is in image and audio processing, since odor signals
typically lack high frequency content). The MLPs used in olfactory
computing tend to be just barely deep - often with only a single
hidden layer - and with very few neurons (often < 50). Straying
from the trend of MLPs, [128] proposes a convolutional neural net-
work (CNN) with two convolution layers and a fully connected
layer which processes a time-series of 250 sensor array inputs. The
CNN is used to estimate odor pleasantness.

K-Means Cluster Analysis (KMeans) is an unsupervised tech-
nique which partitions a collection of points in a metric space into
𝑘 ‘clusters’, based on the proximities of the points in the dataset
to one another. Termination of this algorithm is known to be NP-
Hard [14]. In practice, for odor processing, KMeans often terminates
quickly [130, 135].

Orthogonal matching pursuit (OMP) is an algorithm for com-
pressive sensing, and is a variant of matching pursuit. OMP is an
iterative algorithm which enables correctly recovering an odor
signal from sparse sampling with high probability. We model our
implementation of OMP from the example given in in [40]. The size
of the input to OMP corresponds to the number of sensors used in
the sensor array.

K-Nearest Neighbors (KNN) is a supervised algorithm used in
classification and biometrics tasks. The complexity of this algorithm,
regardless of its exact implementation, scales with 𝑘 , the dimension
of the space, and the number of points in the database. In olfactory
computing applications, the dimensionality is typically the number
of sensors in the sensor array, and 𝑘 ≤ 3 [44]. The number of points
in the database varies, but, in biometric contexts, is typically limited
by the number of authorized users enrolled (which in the case of
wearable electronics, is one).

Fig. 5 shows the fraction of time spent in an olfactory computing
task for different olfactory computing applications1 This fraction
is significant — no less than 72.8% (Scent Recommendation) and up
to 98% (Personal Hygiene Monitoring). An architecture optimized
for the tasks will, therefore, also perform well on the applications.

1Applications were implemented using their published
descriptions:[32],[93],[112],[134],[28],[119],[103],[115], [122],[106],[54].
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Figure 5: Breakdown of processing time spent by applications in
each olfactory computing task. “Other” consists of time not spent
in any specific olfactory computing task, and includes fetching and
preprocessing inputs, initializing data structures, and storing results.
Table 2: Properties of computational kernels needed to sup-
port tasks for odor processing applications

Kernel Input Size (Words) Parameters
Avg. Linear Ops
Between
Non-linear Ops

Data Memory
Required
(Words)

% FLOPS
Auto-vectorizable

AngleDist 6 0 12 6 89
Conv2D 32x32 3x3 N/A 1924 77
GNB 6 54 36 12 0
GD 6 43 110 36 9
KMeans 6 1536 159 1828 89
KNN 2 34 34 19 24
LDA 6 21 110 12 47
MLP 6 163 N/A 19 87
OMP 6 120 45 262 35
SVM 6 126 23 30 7
PCA 6x200 0 14 2496 32
PCA-Inf 6 36 N/A 42 86
PF 2 64 (Particles) 9 4090 10

3 ANALYZING ALGORITHMS FOR
OLFACTORY COMPUTING

Table 2 presents the implementation parameters we considered
in this work for the different algorithms or kernels used to sup-
port olfactory computing tasks. To understand the computational
characteristics of these kernels in context of olfactory computing,
we rely on profiling. Initial kernel profiling was performed on an
Intel Xeon E5-2680 v4. Profiling kernels were written in C++ and
compiled using g++ 11.3.0. The PCA, LDA, and KMeans algorithms
were implemented using the ALGLIB library [24], SVM was im-
plemented using LIBSVM [30], and OMP was implemented with
KL1p[49]. E-nose data used in the algorithms comes from a dataset
of wine spoilage thresholds [46], using six MOS sensors per sample.
The dataset contains 200 samples (a number in line with previous
work [27, 31, 41, 53, 54, 88, 132]) with one of three labels.

Profiling was performed using Linux perf. To determine the
average linear operations between non-linear operations, a cus-
tom analysis tool written with Intel PIN was used. Data memory
requirements, shown in Table 2, are from the bare-metal RISC-V
implementations of the algorithms used to evaluate Ahromaa’s
RISC-V core mode (Sec. 4).

We make several observations about the computational charac-
teristics of the kernels that may impact any architecture we build

for these workloads. First, none of the kernels are integer kernels2
— all kernels require fixed-point arithmetic. Thus hardware sup-
port for fixed-point operations is necessary for energy efficient
computation of olfactory computing workloads.

Second, none of the kernels require complex numbers — this
is very different than audio and image sensor processing which
makes copious use of classical frequency domain signal processing
algorithms [82, 90]. Unlike hearing and sight, which arise from
sensing wave-based phenomena (i.e., light and pressure waves),
the sensation of odor arises from sensing non-wave chemicals.
Thus, there is no frequency or phase component to the sensed odor
signal. Principal component analysis (PCA) does include comput-
ing eigenvalues, but since correlation matrices are symmetric, the
eigenvalues are necessarily real valued. Thus hardware support for
complex arithmetic and fast Fourier transform is not required.

Third, the primary arithmetic primitives are multiplication and
addition, often in the form of multiply-accumulates needed for
evaluation of linear functions, as found in ANN, SVM, LDA, PCA,
AngleDist, and OMP. Although many kernels use non-linear op-
erations, these operations are often either multilinear (i.e., multi-
plication of variables rather than variables by fixed constant), or
are limited in number relative to multiplications and additions, and
they are temporally isolated between long sequences of linear and
multilinear operations.3 Thus, dedicated hardware to accelerate lin-
ear operations is likely to provide significant benefits for olfactory
computing application workloads.

Fourth, there is a large spread in working set size among ker-
nels, with some kernels having very small working sets which can
be supported by a very small data memory, or even with a large
register file, while several kernels require significantly more data
memory. In fact, the largest kernel, PF, can be made to require dras-
tically more memory by increasing the number of particles used in
its Monte Carlo simulation, which can lead to better localization
accuracy. This wide range in memory requirements suggests that
a scalable memory organization is likely to provide energy and
power benefits for olfactory computing applications.

Fifth, many of the tasks support vectorization, even auto-vectorization,
which indicates that parallel architectures are likely to perform well
on olfactory computing application workloads.

4 AHROMAA: AN ULTRA-LOW-POWER
ARCHITECTURE FOR OLFACTORY
COMPUTING

Olfactory computing is applicable in many application domains.
However, in many domains, the light computational requirements
of its algorithmic primitives means the attention of architects is lit-
tle needed. XR headsets, able to power high resolution 3D graphics,
for example, will have little trouble running olfactory computing
tasks. There are, however, application domains with extreme con-
straints which make olfactory computing interesting to architects.
Form factors such as wearables, (earrings, pendants, brooches, etc),
bandages (e.g., for detecting infections), adhesives [61] (e.g., for
body odor monitoring), packaging [5] (e.g., smart packages that

2quantization for ANNs is explored in Sec. 6.
3Due to the computational simplicity of reLU activations, we ignore these in analysis
of non-linear vs linear interspersedness.
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Figure 6: Organization of Ahromaa as a RISC-V core with packed
SIMD unit and CGRA accelerators. Since Ahromaa aims for energy
efficiency, achieved by operating at low voltage and frequency, Ahro-
maa exploits the lack of voltage scaling available to SRAMs to enable
multiple SRAM accesses on a single port per clock cycle.

detect food spoilage), swabs (for breath, urine, body fluids-based
diagnostics, for example), sensors-in-the-wild ( e.g., air quality mon-
itoring [1], surface and ground water quality monitoring, crop &
forestry monitoring [2, 7]), etc., may only allow for energy harvest-
ing. Field deployed sensors may need to maximize limited battery
energy capacities over long periods, or be self-powered. In these
domains, both power and energy are stringent limitations.

Therefore, as a case study, we consider the architecture of a pro-
grammable ultra-low-power olfactory computing hardware plat-
form supporting low frequency and voltage operation; programma-
bility is supported to lower costs and to maintain generality in a
domain where applications are likely to evolve. Our architecture,
Ahromaa (Fig. 6), is a heterogeneous reconfigurable odor monitor-
ing and analysis architecture consisting of a 32 bit RISC-V MCU
(RV32IM) with two integrated accelerators, both supporting fixed-
point operations. The RISC-V core is a four-stage, in order, scalar
core based off of the Open Hardware Group’s CORE-V CV32 RISC-
V IP [48]. Ahromaa can be used to support olfactory computing
systems.

The first accelerator is a 128 bit packed SIMD unit which accel-
erates fixed-point fused multiply accumulate operations on 4, 8, 16,
and 32 bit datatypes, to support the copious multiply-accumulates
found in ANN, SVM, LDA, PCA, AngleDist, and OMP algorithms.
Unlike a typical packed SIMD ISA extension, Ahromaa’s packed
SIMD unit does not have an additional SIMD register file. Instead,
data is accessed directly from memory, which is made possible by
the discrepancy between the core voltage at the minimal energy op-
erating points of Ahromaa (Sec. 6), and the SRAM’s nominal voltage
required to ensure memory retention. Additionally, since the size
of data memory required by many applications (Table 2) is small,
the overhead of a dedicated SIMD register file may be large relative
to data memory in its entirety (this is explored further in Sec. 6,
where data memory is replaced/augmented with a flip-flop based
register file). In order to exploit data reuse found in linear algebraic
workloads (i.e., mapping a sequence of vectors by the same linear
transformation), the packed SIMD unit contains a buffer which can
be loaded with model parameters, or sensor data, neural network
activations, and other runtime data.

The second accelerator is a coarse-grained reconfigurable stream-
ing dataflow architecture with nine heterogeneous PEs (adder PEs,
and multiply-accumulate PEs) arranged in a 3× 3 grid, and utilizing
a bufferless, single-cycle, multi-hop routing network, as in [51, 123].

Each PE contains a small (16 B) buffer, in which it can store model
parameters, as well as accumulated sums. Ahromaa’s CGRA is based
off of the SNAFU low-power reconfigurable architecture. PEs are ca-
pable of 32 bit width packed-SIMD execution of multiplies and adds
(i.e., 1× 32 bit operation, 2× 16 bit operations, etc.). The dataflows
supported on the CGRA enables mapping convolution layers with
various kernel sizes and strides. This is important as although cur-
rently most olfactory computing ANNs are MLPs, there do exist
CNNs for olfactory computing applications, and the choice of the
best model for olfactory computing tasks is still being litigated.

Ahromaa’s CGRA uses adders and multiply-accumulate PEs
since olfactory kernels are dominated by multiplication and ad-
dition, often in the form of multiply-accumulates needed for evalu-
ation of linear functions, as found in ANN, SVM, LDA, PCA, An-
gleDist, and OMP; GNB, PF, KMeans, etc., require adders. The num-
ber of adders and multiply-accumulates in the CGRA were chosen
to limit Ahromaa power to 20mW at nominal voltage and fre-
quency. We used DSAGEN [124] to map dataflows onto the CGRA.
To model a one-hop network in DSAGEN, our CGRA model in
DSAGEN contains links between each PE; we added constraints
to the dsa-scheduler to ensure that only mappings which do not
violate the intra-PE link topology of Fig. 6 are considered. We chose
16 B buffers as these buffers support weight stationary dataflow
for the Conv2D kernel, while also supporting input stationery and
weight stationary dataflows for the linear transformations used in
other kernels (SVM, LDA, MLP, etc).

Both accelerators support efficient packed SIMD addition and
multiplication for datatypes of varying width, as wide adders and
multipliers can be recursively built from narrow adders and mul-
tipliers. Wide adders are built from narrow adders via carry-out
propagation. Wide multipliers are built from narrow multipliers via
convolution (or, polynomial multiplication), as in Fig. 7. This figure
shows how narrow multipliers can be used to compute partial prod-
ucts for a wider multiplier (Fig. 7a). These partial products are then
summed to generate wider multiplier’s product (Fig. 7b). When
configured to support the ‘narrow’ datatype, the multiplier simply
outputs the 𝐴1𝐵1 and 𝐴0𝐵0 products, while when configured to
support the ‘wide’ datatype, the multiplier outputs the full𝐴𝐵 prod-
uct. This technique can be recursively applied, which enables 8 bit,
16 bit, and 32 bit multipliers to all be built from 4 bit multiplier prim-
itives. Note that when operating on the ‘narrow‘ datatype, there are
twice as many partial product generating multipliers as required.
These multipliers can be clock-gated, reducing dynamic power con-
sumption in the multipliers and the adder reduction tree. A second
use for these multipliers could be to increase the total width of the
packed SIMD units. However, doing so would require doubling the
data memory bandwidth. At ultra-low frequency operating points,
this may be possible, however, it is not explored in Ahromaa. In
fixed-point arithmetic, shifters are used to re-scale products. These
are implemented for the different datatypes in parallel, and the
output is multiplexed based on the datatype required. In both the
packed SIMD unit and the CGRA PEs, the multipliers are pipelined
to ensure they meet timing at nominal voltage and frequency. Exact
location of pipeline registers is determined by register re-timing. To
support ANNs, both accelerators are programmed to perform either
linear or reLU activations on accumulated data before writing the
results to data memory.

6



(a) Partial product computation.

(b) Partial product reduction.

Figure 7: Narrow multipliers are converted into wider multi-
pliers via convolution, or polynomial multiplication.

The accelerators are given direct access to data memory, which
enables the RISC-V core to be idle while the accelerators work. The
accelerators signal completion of their work via IRQ lines. The
core can also choose to poll the accelerator’s status register if the
accelerator is expected to finish its task quickly. Since accelerator
launch costs are small (due to the small size of the CGRA, and
small number of operations supported by both architectures), and
the often large number of linear operations between non-linear
operations (Table 2), the accelerators are focused on accelerating
linear operations, and specifically fused multiply-accumulates. This
means that non-linear operations are left for execution on the RISC-
V core.

Ahromaa uses a modified Harvard architecture, in which pro-
gram instructions and model parameters are stored in a non-volatile
ROM, while read-write data is stored in an SRAM-based data mem-
ory. Since standard SRAMs cannot be safely voltage scaled without
error detection and correction coding [73], a single SRAM bank
may be accessed multiple times by the DMA controller in each
compute clock cycle. Sec. 6 explores several different assumptions
about the data memory organization, including scaling the sizes
and number of banks, and replacing the SRAM with technologies
which enable voltage scaling to be applied to the data memory.

Ahromaa may be run in one of three modes. In MCU mode, only
the RISC-V core is active, with both accelerators powered off. In
MCU+SIMD mode, the RISC-V core and packed SIMD unit are used,
but the CGRA is powered off. InMCU+CGRAmode, the RISC-V core
and CGRA are powered, while the packed SIMD unit is powered off.
Which mode to use in deployment is determined statically by the
programmer after analyzing performance in the different modes.
In section 6, we obtain results for each olfactory algorithm in all
three modes. Consequently, we consider Ahromaa’s performance
on a given metric to be that of the operating mode with the best
performance on that metric.

5 METHODOLOGY
We evaluated Ahromaa’s performance using cycle accurate RTL
models. Power, area, and latency numbers are taken from analysis
post synthesis in a commercial 65 nm technology. Such a legacy
technode is appropriate for this work, as 65 nm process has low
production and non-renewable engineering costs relative to more

Figure 8: The supply voltage vs delay curves for an inverter chain
made with high𝑉𝑡ℎ transistors in 65 nm technology.

recent technodes. SRAMs were modeled with a commercially li-
censed 65 nm SRAM compiler, which provides SRAM area, as well
as read and write power, and leakage power in normal, standby,
and retention modes.

In order to evaluate the effects of voltage scaling on power and
performance, we ran SPICE model simulations of voltage sweeps
on inverters made from high 𝑉𝑡ℎ transistors, and recorded change
in static and dynamic power consumption, as well as change in
gate delay. The resulting Voltage vs Power and Voltage vs Delay
curves (Fig. 8) were interpolated using cosine splines [92]. Previous
work [55, 86] has shown that inverter chain-based power-delay
scaling is valid for other logic. Indeed vast body of prior work has
used inverter scaling for scaling power of complex circuits such as
CPUs [55, 108, 133], GPUs [21], FPGAs [87], accelerators [89], etc.
We use the same approach.

The kernels were implemented for the baseline MCU architec-
ture. The kernels were written in Rust and compiled with rustc
version 1.62. Linear algebra subkernels (e.g. matrix-multiply and
symmetric eigen decomposition) were performed using the nalge-
bra [34] library.

6 RESULTS
Fig. 9 shows baseline results for Ahromaa with several SRAM orga-
nizations at nominal frequency (600MHz) and voltage (1 V). Ahro-
maa’s performance on the kernels is shown in Fig. 9a, broken down
by Ahromaa mode of operation. Across all kernels, the mode with
the packed SIMD unit consistently outperform the RISC-V core base-
line (Fig. 9a). Similarly, for most kernels, the CGRA based mode
outperforms the RISC-V core baseline. However, for applications
with very small amounts of compute (e.g., LDA), the CGRA con-
figuration and launch overhead offset the speed-up provided by
the CGRA, resulting in faster execution on the RISC-V core alone.
Despite this, the CGRA is the best performer on a number of bench-
marks, including Conv2D - a kernel vital in CNNs, and SVM. The
high performance of the parallel architectures is due to the preva-
lence of multiply-accumulates within the kernels, as discussed in
Sec. 3.

The same pattern also emerges for energy (Fig. 9d), with the
MCU+SIMD outperforming the MCU alone in energy efficiency,
while the MCU+CGRA only outperforms the MCU on several ker-
nels and outperform the MCU+SIMD on Conv2D, due to the high
power consumption of the MCU+CGRA. The figure also shows the
importance of using multiple SRAM banks. By dividing the SRAM
into banks, banks which are unneeded for a given application ker-
nel may be put into retention mode, eliminating nearly all power
consumption of the SRAM.
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(a) Performance of Ahromaa’s modes
across benchmarks.

(b) Area needed to support Ahromaa’s
modes with SRAM organized into one, two,
and four banks.

(c) Power consumption of Ahromaa’s
modes.

(d) Total energy consumption of Ahromaa’s modes for each kernel and with several SRAM organizations. ‘M’, ‘MS’, and ‘MC’ are for MCU,
MCU+SIMD, and MCU+CGRA, respectively. The ‘[124]B’ suffix gives the number of memory banks.

Figure 9: Baseline Results.
Fig. 10 shows the absolute energy consumed by Ahromaa’s

modes at their minimal energy operating point (MEOP) on a 10mW
nominal power budget. The MEOPs are 0.4V and 357MHz for
the MCU and and MCU+SIMD, and 0.4V and 119MHz for the
MCU+CGRA. Operating at the MEOP provides significant energy
efficiency improvement over the nominal operating point due to
reduction in dynamic power which decreases super-linearly with
reduction in frequency. This can be seen by the growth in the pro-
portion of energy consumed by SRAM reads and writes, relative
to Fig. 9d. Operating at MEOP enables the MCU+CGRA to become
the most energy efficient mode on most kernels, with MCU+SIMD
being the most energy efficient on OMP and PF. On average, the
MEOP provides 1.68, 2.79, and 1.49× improvement over the nominal
operating points for the RISC-V core, RISC-V core+packed SIMD
unit, and RISC-V core+CGRA modes, respectively.

Fig. 11 shows the effects of replacing SRAM with memories built
out of flip-flops. In Fig. 11a, the entire 4 KiB SRAM is replaced by an
equivalently sized memory built from flip-flops. This enables volt-
age scaling to be applied to the memory, whereas with a standard
6T-SRAM, scaling voltage down to the core’s MEOP would likely
result in data corruption. The effects of this are very positive for
the MCU and MCU+SIMDmodes, both seeing an over 60% decrease
in energy consumption. In these modes, SRAM access energy dom-
inates energy consumption. Thus, the lower energy of the flip-flop
accesses leads to significant energy efficiency improvements. This
comes despite the fact that the voltage-scaled memory inhibits the
MCU+SIMD from operating at full throughput, due to voltage scal-
ing of the flip-flop memory leading to increased access latencies.
This fact also mitigates the effectiveness of this technique in the
MCU+CGRAmode. Also, in this mode, compute energy, rather than
memory access energy, is the predominant energy consumption.

In Fig. 11b, Ahromaa’s memory is replaced by a small 256 B flip-
flop based memory. For kernels with limited data memory require-
ments (which is the majority of the studied kernels), this memory
organization results in significant (> 4×) energy savings in MCU
and MCU+SIMD modes. Here, once again, the MCU+CGRA mode
sees less improvement in energy consumption due to increased

execution latency, and a smaller proportion of energy consumption
being due to SRAM accesses in the baseline. Since the small memory
consumes far less dynamic and static power than the 4 KiB memory,
the improvement over the baseline grows, with the MCU+SIMD
mode reducing power by over 80%. The smaller memory also helps
MCU+CGRA mode, which sees a 30% reduction in energy con-
sumption. Across all kernels, this data memory organization lead to
additional 4.21, 4.37, and 2.85× improvements in energy efficiency
on average.

The energy savings from flip-flop based memories come at a
significant area cost. The area of Ahromaa with 4 KiB memory is
0.53mm2, a 193% increase over Ahromaa with an equally sized
SRAM. The overhead of adding the 256 B memory to Ahromaa,
however, is small. Using the small memory as a scratchpad, while
retaining the standard SRAM for applications which may require
more memory, results in an area increase of only 10.3%. This demon-
strates that, in the the low-power olfactory computing domain, the
small memory requirements of algorithms has a major impact on
choice of computer architecture, with significant trade-offs between
area (and hence cost) and energy efficiency. This trade-off can be
mitigated by using hybrid memories, composed of small capacity,
low density, low power memories, and larger, denser, higher power
memories.

We also evaluate how parameter and activation quantization
impacts energy efficiency in olfactory computing using the two
ANN related kernels (MLP and Conv2D). Fig. 12 shows the effects
of data quantization on the architectures at MEOP for a variety of
different SRAM organizations. Benefits for the RISC-V core are the
most limited, as the RISC-V core only takes advantage of quantiza-
tion through reduction in number of memory accesses. The CGRA
and packed SIMD unit also see benefit from reduced latency, as
they are able to decrease the latency of the acceleratable portion
of the computation via packed SIMD execution. Packed SIMD ex-
ecution on multiplies and adds, as is needed by the packed SIMD
unit and CGRA for the MLP and Conv2D workloads, has negligible
hardware overhead, as word-length multipliers and adders can be
built by recursively composing half-word, byte, and nibble length
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Figure 10: Energy consumption at the MEOP on each kernel with different SRAM organizations: One 2048 word SRAM, two 1024 word SRAMs,
and four 512 word SRAMs.

(a) Energy achieved at MEOP for Ahromaa’s modes across kernels
with 4 KiBmemories built out of flip-flops relative to execution with
a standard 4 KiB SRAM.

(b) Energy achieved at MEOP for Ahromaa’s modes across kernels
with a 64-word memory built out of flip-flops relative to execution
with a standard 4 KiB SRAM.

Figure 11: Replacing SRAMs with flip-flops has a dramatic
effect on total energy consumption for some of Ahromaa’s
modes of operation.

Figure 12: Data quantization leads to decreased energy for appro-
priate kernels. Further, data quantization’s benefits are orthogonal
to benefits from banking.

multipliers (via convolution) and adders (via carry propagation).
Although not evaluated, the CGRA and packed SIMD unit could
also see decreased dynamic energy consumption via input gating,

as logic used to transform narrow (e.g., 4 bit) multiplications into
wide (e.g., 32 bit) multiplications is not needed when performing
quantized operations. Fig. 12 also shows that the improvements
from quantization and from banking are sufficiently orthogonal of
one another that they can be deployed simultaneously to achieve
the effects of both without interference.

Indeed, there is also a synergistic relationship between banking
and quantization, which can be most clearly seen in the Conv2D
results for the RISC-V core mode. In this mode, since performance
is independent of both banking and quantization, when the SRAM
bank is available, the amount of SRAM leakage energy is fixed and
independent of quantization. However, when two banks are used,
since quantization leads to a decrease in the total amount of memory
required to execute the Conv2D kernel, a single SRAM bank may
be placed in retention for 4, 8, and 16 bit data, while both SRAM
banks must be active for 32 bit data. The granularity of this again
increases when four banks are available, with 4 and 8 bit data types
only needing a single bank, while 16 bit data requires two banks,
and 32 bit data requires all four banks. This same phenomenon plays
out with the other modes. However, SRAM leakage energy in these
cases is also impacted by quantization’s impact on performance.

Ahromaa’s results provide several interesting insights into olfac-
tory computing. First, when area is not a concern (consider compute
area on the back-side of a solar harvester), a programmable het-
erogeneous architecture will outperform monolithic architectures
and should be used. Second, parallel SIMD and dataflow architec-
tures are effective at improving energy efficiency of even the very
small olfactory computing workloads — this is not self-evident, as
many olfactory computing workloads have orders of magnitude less
compute than even traditional sensor processing. Third, memory
organization has a major impact on energy efficiency in olfactory
computing, due to the wide ranging amounts of data memory re-
quired by its workloads.

Comparison against related work: There are works related
to Ahromaa from the perspective of low-power design, including
works on subthreshold sensor processors [86], other ultra low-
power processors [76], and architectures for energy harvester pow-
ered processors [71]. While parallel architectures are often thought
of as having high-power, recent works have proposed CGRAswhich
operate at far below nominal frequency [35, 51], enabling the en-
ergy efficiency associated with dataflow architectures, while still
allowing ≈ mW operations. There has also been interest in low
power SIMD architectures, including scalar vector processors [52],
and vector processors for low-power media applications [50, 84].

Fig. 13 shows how a heterogeneous architecture such as Ahromaa
outperforms an ULP MCU, an ULP MCU with a ULP SIMD unit,
and a ULP CGRA (the individual operating modes of Ahromaa,
respectively) by 1.36, 1.22, and 1.1× on average in energy efficiency
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(in terms of energy at MEOP). This demonstrates the benefit of our
architecture against possible alternatives.

Figure 13: Ahromaa’s heterogeneous design allows it to outperform
an MCU, an MCU with SIMD, and a CGRA baseline in energy effi-
ciency at MEOP.

Fig. 14 shows the application level impact of Ahromaa - the
entire application is mapped to Ahromaa for these results. On
average, Ahromaa consumes 65%, 95%, and 77% of the energy used
by the MCU, MCU+CGRA, and MCU+SIMD baseline architectures.
Ahromaa benefits are due to its efficiency on olfactory computing
kernels (Fig. 13), and because olfactory computing applications are
dominated by these kernels (Fig. 5).

Figure 14: Ahromaa’s energy efficiency vs an MCU, an MCU with
SIMD, and aCGRAbaseline in energy efficiency atMEOPonolfactory
computing applications.

6.1 Ahromaa in a Full System
Consider a wearable patch used to evaluate body odor. One such
system was prototyped in [135], with a six-sensor array of CNT
based chemical sensors. However, the ‘compute’ in this prototype
consists of an MSP430 MCU used only to transmit data from the
sensor array to a nearby laptop where the olfactory computing ac-
tually occurs. Further, the prototype is powered by large batteries,
impractical for a wearable patch. To commoditize such a wearable,
olfactory computing should occur on the wearable, and the system
should be self powered. Wearable piezoelectric harvesters are ca-
pable of harvesting power from the human body at densities up
to 3.8 µWmm−2, however, we assume a much more conservative
0.38 µWmm−2 and a harvester with area 1 cm2. Fig. 15 shows how
long Ahromaa must sleep between runs of each algorithm in order
to allow harvesting of sufficient energy. Results show that Ahro-
maa does not sleep for longer than 30ms for any algorithm. This
means that Ahromaa is often not the bottleneck on the system, as
piezoelectric harvesters often run at < 5Hz [45] to low hundreds
Hz [58], and often have an energy production duty cycle well un-
der < 50% [57, 97]. Thus Ahromaa can support the computational
needs of energy constrained olfactory computing devices, such as
wearable patches.

Figure 15: The energy harvesting period needed between runs of
each algorithm on a olfactory computing system using Ahromaa
and a 38 µW piezoelectric energy harvester.

Figure 16: The kernel-level relative energy consumption of DNN
accelerators vs Ahromaa. Kernels which cannot be mapped onto a
DNN accelerator are marked with X

6.2 Ahromaa vs Deep Learning Accelerators
We also compared Ahromaa against an Eyeriss-like [33] and an
NVDLA-like [136] DNN accelerator using the Accelergy-Timeloop
architecture-level energy estimation methodology [129]. To ensure
a fair evaluation between the accelerators and Ahromaa’s CGRA,
the accelerators were allocated equivalent memory (4 KiB) and
number of PEs (nine in a 3 × 3 grid for Eyeriss-like, 3 PEs each
with 3 LMACs for NVDLA-like). Timeloop-mapper was used to
identify energy-optimal mappings using the compute and memory
power and logic and memory energy data described in Sec. 5. Fig. 16
shows the energy consumption of the DNN accelerators relative to
Ahromaa on Conv2D, LDA, MLP, PCA-Inf and SVM kernels (the
remaining kernels feature significant amounts of computation not
suitable for a DNN accelerator, and which cannot be mapped onto
the accelerator substrates via Timeloop-mapper). Across the rele-
vant kernels, the Eyeriss-like accelerator is within ±5% of Ahromaa.
Surprisingly, the Eyeriss-like accelerator only beats Ahromaa by 2%
on Conv2D. However, an architecture designed to exploit a weight-
stationary data flow performs best on batched inputs, enabling
fetched weights to be reused across multiple inputs, while the ker-
nel evaluations assume a batch size of one, as is appropriate for an
edge sensor processor. The NVDLA-like architecture outperforms
Ahromaa by no more than 8% on all kernels but MLP. On MLP,
the NVDLA-like architecture consumes only 82% of the energy of
Ahromaa, using an input stationary dataflow.

Due to the limited performance improvement provided by the
DNN accelerator, we chose not to include a DNN accelerator as
part of Ahromaa’s heterogeneous composition.

6.3 Generality of Ahromaa
Ahromaa is designed to support the characteristics of olfactory
computing — small data, low data rates, and lax performance re-
quirements. There are several other emerging domains with similar
characteristics - e.g., sensing and measurement for light level [39],
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Figure 17: Ahromaa leads to energy improvements on non-odor
applications when those applications have data and performance
characteristics similar to typical olfactory computing applications.
Comparison is against the baseline MCU.

atmospheric temperature [39], noise level [13], barometric pres-
sure [66], body temperature [98], heart rate [70], wind speed [25],
nasal airflow [99], humidity [79], perspiration [91], blood pres-
sure [75], step count [29], etc., which have low sample rate (subHz
to a few Hz), sample precision (1-16 bits), and duty cycle (seconds
to days). Ahromaa or similar olfactory computing systems could
prove useful for these applications as well.

To demonstrate that Ahromaa can benefit these non-olfactory
computing domains, we re-implemented strawberry health mon-
itoring [39], and forest fire detection [79] applications with GNB
classifiers, and an asthma emergency detection [98] application
with an SVM classifier, and evaluated these applications using syn-
thetic data on Ahromaa and the baseline four-stage RV32IM MCU.
Results are shown in Fig. 17. Ahromaa provides 1.4 − 1.8× energy
improvements.

6.4 Future Research
Ahromaa is the first attempt at addressing the olfactory computing
space. To quantify the opportunity for future work on olfactory
computing hardware, we performed a simple limit study where we
implemented kernel-specific accelerators in RTL and synthesized
them in 65 nm technology. These ASICs differ from typical accelera-
tors in that they target the exact kernel metaparameters, such as the
number and shapes of layers in MLP, the filter size in Conv2D, etc,
which enables optimizations beyond what are typically found in ac-
celerators (e.g., the KNN accelerator includes an optimal switching
network for the number of nodes in the dataset). Fig. 18 shows the
energy consumption of the ASICs relative to Ahromaa. We see up
to 19× benefit over Ahromaa motivating future research on logic
and memory systems that can be configured to each kernel and
reduced control overhead for fetching programmable instructions
from memory.

Future research could also focus on alternative technologies that
further trade off performance for power or support deeper volt-
age scaling. For example, a recent ultra-low power/performance
EEPROM design [43] enables ROMs which consume 250 pWbit−1
leakage power at 90 nm (about 64x lower leakage than the 65 nm
SRAMs considered in this work). This EEPROM, however, can only
provide a read bandwidth of < 2Mbit s−1 — such EEPROMs could
not support the memory bandwidth of Ahromaa, but could poten-
tially support the memory bandwidth of a scalar architecture. Simi-
larly, a recent22 nm 12T SRAM [69] supports < nWbit−1 leakage
and < aJ bit−1 read and write energy at a reliable 0.2V operating
point. When scaled to 65 nm, the SRAM consumes < 1

10 the leakage
power/bit than a 65 nm flip-flop based memory, while using only
≈ 2× the area of an 6T-SRAM memory.

Figure 18: The kernel-level relative energy consumption of ASICs
vs Ahromaa.

Future work could also exploit the small size of several olfactory
computing applications. These applications may be unrolled com-
pletely — i.e., turned into circuits — mitigating the need for memory
altogether (modulo some IO buffering). Some of these applications
also implement fixed models. For them, even the compute units can
be optimized via constant propagation techniques, parameter-level
quantization, etc.

Non-silicon electronics could also be interesting. Printed elec-
tronics enable bespoke customization at low cost [111]. Their poor
performance (operating frequencies in the 10s-100s of Hz) may
not be a liability in the olfactory computing domain due to its lax
performance requirements. Similarly, flexible electronics [85] can
also meet the performance requirements for olfactory applications
while optimizing cost and conformality.

7 SUMMARY AND CONCLUSIONS
In this work, we argued that olfactory computing is an emerging
domain for computer architects since a) a large number of driver
applications have emerged, b) odor sensors have recently improved
greatly, and c) non-traditional form factors such as wearable, elec-
tronic stickers, and xR devices that can host olfactory computing
are already seeing wide adoption. Through a comprehensive review
of olfactory computing literature, we identified a number of key
olfactory computing algorithms which we profiled on existing hard-
ware. Based on this profiling, we identified several characteristics,
including the preponderance of fixed-point computation, and linear
operations, and real arithmetic; a variety of data memory require-
ments; and opportunities for data-level parallelism. We proposed
Ahromaa — a heterogeneous architecture for olfactory comput-
ing targetting extremely power and energy constrained olfactory
computing workloads and evaluate it against baseline architectures
of an MCU, a state-of-art CGRA, and a MCU with packed SIMD
extension. Across our algorithms, Ahromaa’s operating modes out-
perform the baseline architectures by 1.36, 1.22, and 1.1× in energy
efficiency when operating at MEOP. We also showed how careful
design of data memory organization can lead to significant energy
savings in olfactory computing, due to the limited amount of data
memory many olfactory computing kernels require. These improve-
ments to the data memory organization lead to additional 4.21, 4.37,
and 2.85× improvements in energy efficiency on average for all
kernels.
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