
Rethinking Programmable Earable Processors
Nathaniel Bleier
University of Illinois
Urbana, Illinois, USA
nbleier3@illinois.edu

Muhammad Husnain Mubarik
University of Illinois
Urbana, Illinois, USA
mubarik3@illinois.edu

Srijan Chakraborty
University of Illinois
Urbana, Illinois, USA
srijanc2@illinois.edu

Shreyas Kishore
University of Illinois
Urbana, Illinois, USA
kishore4@illinois.edu

Rakesh Kumar
University of Illinois
Urbana, Illinois, USA
rakeshk@illinois.edu

ABSTRACT
Earables such as earphones [15, 16, 73], hearing aids [28], and smart
glasses [2, 14] are poised to be a prominent programmable com-
puting platform in the future. In this paper, we ask the question:
what kind of programmable hardware would be needed to support
earable computing in future? To understand hardware requirements,
we propose EarBench, a suite of representative emerging earable
applications with diverse sensor-based inputs and computation
requirements. Our analysis of EarBench applications shows that,
on average, there is a 13.54×-3.97× performance gap between the
computational needs of EarBench applications and the performance
of the microprocessors that several of today’s programmable ear-
able SoCs are based on; more complex microprocessors have un-
acceptable energy efficiency for Earable applications. Our analysis
also shows that EarBench applications are dominated by a small
number of digital signal processing (DSP) and machine learning
(ML)-based kernels that have significant computational similarity.
We propose SpEaC — a coarse-grained reconfigurable spatial ar-
chitecture – as an energy-efficient programmable processor for
earable applications. SpEaC targets earable applications efficiently
using a) a reconfigurable fixed-point multiply-and-add augmented
reduction tree-based substrate with support for vectorized complex
operations that is optimized for the earable ML and DSP kernel
code and b) a tightly coupled control core for executing other code
(including non-matrix computation, or non-multiply or add oper-
ations in the earable DSP kernel code). Unlike other CGRAs that
typically target general-purpose computations, SpEaC substrate
is optimized for energy-efficient execution of the earable kernels
at the expense of generality. Across all our kernels, SpEaC out-
performs programmable cores modeled after M4, M7, A53, and
HiFi4 DSP by 99.3×, 32.5×, 14.8×, and 9.8× respectively. At 63mW
in 28 nm, the energy efficiency benefits are 1.55×, 9.04×, 68.3×, and
32.7× respectively; energy efficiency benefits are 15.7× - 1087× over
a low power Mali T628 MP6 GPU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527396

ACM Reference Format:
Nathaniel Bleier,MuhammadHusnainMubarik, Srijan Chakraborty, Shreyas
Kishore, and Rakesh Kumar. 2022. Rethinking Programmable Earable Proces-
sors. In The 49th Annual International Symposium on Computer Architecture
(ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3470496.3527396

1 INTRODUCTION
Different programmable computing platforms emerge at different
times [18] driven by both technology as well as applications. One
programmable computing platform that may be on the cusp of
explosion is that of “earables” [10] – devices such as earphones [15,
16, 73], hearing aids [28], and smart glasses [2, 14] that are worn in
or around the ear and that interact with humans mostly through
acoustics. These devices have a large number of sensors [38] which
can be leveraged to support a variety of applications (Figure 1).

Figure 1: Emerging earable devices will be programmable platforms
with a rich set of sensors and will support a variety of applications.

There are several signs that earables may become a prominent
programmable computing platform. First, current global market
for earables is already over 20 billion dollars [68] and is expected
to over 90 billion dollars in next five years [68]. Second, hardware
vendors are already building earables with increasingly complex
sensors (e.g., proximity sensors, gyroscopes, capacitive sensors,
accelerometers, SpO2, EEG, EOG, EMG sensors, microphone and
speaker array, etc.) which are being leveraged to support a wide

1

https://doi.org/10.1145/3470496.3527396
https://doi.org/10.1145/3470496.3527396

variety of computing applications [4, 27, 36]. Third, many earable
platforms are already programmable and increasingly so. In fact, a
large variety of software applications processing different sensor
data are already supported in many of today’s earables [4, 27, 36])
or are being explored [63, 64, 66, 78].

In this paper, we ask the question: what kind of programmable
hardware would be needed to support earable computing in the future?
Today’s programmable hardware for earables [52, 53, 60, 61, 65]
need to support only limited computation and sensing and typically
consist of either microcontrollers or DSPs or both, running at low
to moderate frequencies. The choice of the earable microcontrollers
(Cortex M-4 and M-7 cores are popular due to their DSP extensions)
and DSPs (Tensilica HiFi DSPs are popular due to their relatively
low power), their number, and their operating frequencies are lim-
ited by the capacity limitations of today’s earable batteries (e.g.,
AirPods Pro uses a 45.4mAh, 3.7V battery [72]). It is unclear if
the same processors and programmable hardware will be adequate
for future earable applications that are likely to have much higher
computational needs and process much more diverse sensor data.
Simply choosing more powerful microprocessors and DSPs may
not suffice either since the severe energy constraints of the earable
batteries still need to be met. On a AirPods Pro 45.4mAh battery,
for example earable hardware should draw only tens of mWs of
power for acceptable experience.

To understand the hardware requirements for emerging ear-
able applications, we propose EarBench, a suite of representative
emerging earable applications (Section 2) with diverse sensor-based
inputs and computation requirements. The EarBench applications
have been chosen through a comprehensive survey of earable ap-
plications research [10], personal correspondence with domain
experts [69], and profiling of earable applications to to ascertain
their execution requirements.

We analyze (Section 3) the performance of EarBench applications
on a spectrum of programmable microprocessors, including those
roughly modeled after ARM Cortex-M4 and Cortex-M7 - these
cores are a part of several current programmable earable SoCs).
We find that there is a 13.54×-3.97× performance gap between the
computational needs of EarBench applications and the performance
of today’s Cortex-M4 and Cortex-M7-based programmable earable
hardware. More complex microprocessors (e.g., A53) can meet the
performance requirements for several EarBench applications, but
their high power requirement (e.g., 276mW to 339mW for A53)
severely restricts functionality (e.g., number of seconds of audio
that can be processed, number of inferences and localizations that
can be performed, etc. before battery runs out), rendering them
unacceptable.

Our analysis of EarBench applications also shows that such ap-
plications are dominated by a small number of diverse digital signal
processing (DSP) and machine learning (ML) kernels – GEMM,
GEMV, FFT, bilinear filtering, 1-D and 2-D convolution, and LU.
Any programmable earable hardware must provide high perfor-
mance on these kernels.

We propose SpEaC1 —a coarse-grained reconfigurable spatial ar-
chitecture (Figure 6) to target earable applications efficiently. SpEaC

1Spatial Earable Computer

has a fixed-point multiplier and adder tree-based distribute-then-
reduce substrate with support for vectorized complex operations
that energy-efficiently accelerates the earable ML and DSP kernels
and that can be configured for each kernel based on its dataflow. A
tightly-coupled scalar, in-order CPU is responsible for configura-
tion and stream-based programming. The CPU also executes code
that does not fit well on the reconfigurable substrate, including
non-multiply or add operations in the earable DSP kernel code.
Unlike recent CGRAs such as SoftBrain [57] whose substrate is
designed to support general-purpose computation and lacks direct
support for complex operations, SpEaC substrate is optimized for
energy-efficient execution of the earable kernels at the expense of
generality.

Across our kernels, SpEaC outperforms programmable cores
modeled after M4, M7, A53, and HiFi4 DSP [75] 99.3×, 32.5×, 14.8×,
and 9.8× respectively.

At 63mW in 28 nm, the energy efficiency benefits are 1.55×,
9.04×, 68.3×, and 32.7× respectively; energy efficiency benefits are
15.7× - 1087× over a low power Mali T628 MP6 GPU. Kernel-level
benefits also translate into application-level benefits. SpEaC meets
application-level performance requirements of 9 out of 11 EarBench
applications; applications can now run for long periods on an ear-
able class battery.

2 EARBENCH: A SUITE OF EMERGING
EARABLE APPLICATIONS

To construct EarBench, a suite of representative emerging earable
applications, we conducted a comprehensive survey of earable ap-
plications research and practice [12, 44, 59, 62, 70], including over 50
papers on http://esense.io, and interviewed three earable computing
domain experts [69]. We observed that most research and commer-
cial earable computing applications fall into one of four categories:
(1) Human-Machine Interface (HMI) applications that allow the ear-
able user to interact with the device (and vice-versa). In the absence
of traditional interfaces (e.g., keyboard, mouse, touchscreen), inter-
actions are typically via sound and taps. (2) Audio applications that
decode, manipulate, and playback audio data streams (e.g., phone
calls, podcasts, acoustic augmented reality (AAR)). (3) Analytics ap-
plications, such as ECG monitors, that are computation-heavy but
should ideally execute locally on the earable device. Finally, (4) Spa-
tial Awareness applications that localize the user, their movements,
head gestures, etc. for applications in AR/VR, gaming, location-
specific alerts, etc. These spatial tracking applications are often
characterized by sensor fusion engines, and are thus assigned to a
separate category. To have a representative, but diverse suite, we
then selected from each category 2-4 applications with different
computational requirements, as determined by profiling (Table 2),
and diverse sensor-based inputs. Diversity was considered also in
terms of underlying algorithms (e.g., DSP vs ML, RNN vs CNN vs
BERT) and use cases (e.g., authentication vs recognition, classifi-
cation vs NLP, tracking vs localization). Once the selection was
finalized, each application was either custom written or correspond-
ing high quality open source implementation was found. We then
packaged the collection of custom written and open source CPU-
based software implementations of these applications, including

2

Table 1: EarBench: Inputs, outputs and timing requirements.

Applications Inputs / Outputs / Timing Requirements

tinySR 1s audio / Small vocabulary English words / real time (≤ 1 s)
DeepSpeech 5s audio / English text / real time (≤ 1 s)
Ambisonic-2/6/8 10s audio / Binauralized audio / real time (≤ 1 s)
HMT-1 IMU@100Hz / dead-reckoned location of the user / ≤ 1 s
HMT-10 IMU@1 kHz / dead-reckoned location of the user / ≤ 1 s
HRTF - 2/6/8 8sec audio / binauralized audio / ≤ 1 s
Speaker Auth. 1s audio / Classifies the speaker as one of the 10 authorized speakers,

or as unauthorized / real time (≤ 1 s)
ALBERT question (10 words) / start_logits: the logits of being

the start of the answer of each position end_logits: the logits of being
the end of the answer of each position. / ≤ 3 s

DeepECGCNN 9s ECG signal / Four output classes 1) Normal sinus rhythm, 2) Arrhythmic,
3) Other kind of rhythm, 4) Very noisy, / 9s

Wave2Letter MFCC with input tensor share (1, 296, 39) / Tensor of time and class probability of shape
(1, 1, 148, 29) / real time (≤ 1 s)

TLIO-1DResNet18 IMU@200HZ/ Two 3D vectors, the displacement estimates and their
uncertainties / ≤ 0.1 s/inference

EKF IMU data 75k samples / Orientation of IMU / ≤ 1 s

build files, input data, and test vectors (several of which are devel-
oped in-house) into a suite.

2.1 HMI
TinySR [63] is a real-time speech recognition agent for a small
vocabulary (10s to 100s of words), stored as an acoustic model.
TinySR can be used by other applications to create speech-based
interfaces (e.g., audio playback controlled via commands such as
“stop”, “next track”, etc). These acoustic models use traditional DSP
techniques for classification, such as Fast Fourier Transforms (FFT),
and Discrete Cosine Transforms (DCT).

DeepSpeech [32] performs large-vocabulary speech recognition,
transforming arbitrary speech utterances into text. DeepSpeech
uses a recurrent neural network (RNN) to produce a phonetic, tex-
tual version of the speech utterance. This is then passed into an
N-gram based language model which produces a ‘proper’ text of the
speech utterance. EarBench includes the TensorFlow Lite version
of this system, developed by Mozilla.

Wav2letter [22] is an end-to-end speech recognition system built
out of a convolutional neural network (CNN). Like DeepSpeech,
Wav2letter also performs large vocabulary speech recognition, but
it differs in its CNN-based approach instead of an RNN-based one.

Speaker Auth. [37] verifies whether an input speech signal is
indeed from the legitimate/registered user. The application uses the
Mel-frequency cepstrum coefficients (MFCC) as input to a Gaussian-
mixture model classifier.

2.2 Audio
Ambisonic decodes and binauralizes a surround sound audio stream
(i.e., creates two versions of the sound as they would arrive at the
two ears). This application uses libspatialaudio [76] and is based on
a benchmark from ILLIXR XR [33]. Ambisonic in EarBench consists
of three constituent implementations, Ambisonic-{2,6,8}, differing
in the number of channels in the input encoding.

Head Related Transfer Function is a 3D audio application that
aims to synthesize sounds that, to the user, would appear realistic.
This requires two steps. First, the gaming environment’s echoes
need to be embedded into the sound, hence the surrounding’s im-
pulse response is convolved with the sound source. Second, the
user’s head, face, and ears also distort the signal before it enters
the ear. Hence, these distortions— together called the HRTF— is

also convolved with the output of the first step. The net result is
a left/right spatial audio stream that is played back to the user. Of
course, the synthesized sound must be updated as the sound source
moves in the environment. HRTF implementation in EarBench is
taken from the rg3d video game engine [54].

2.3 Analytics
DeepECGCNN [43] is a convolutional neural network that classi-
fies ECG data (using 12 hidden layers - 8 convolution for feature
extraction and 4 fully connected layers for final classification - and
140M trainable parameters). The network accepts a time series ECG
signal of 30 seconds at a sampling interval of 0.003 second, and
then classifies it into one of the following 4 classes— normal sinus
rhythm, arrhythmic, other rhythm, and very noisy. Since in-ear
ECG sensing has been shown to be effective [23], we use it as a
representative biosensing-based earable application.

ALBERT [45] is a lite version of BERT [25] used for natural lan-
guage processing (NLP) tasks— in this case, question answering.
EarBench uses a TensorFlow Lite model trained on the Stanford
Question Answering Dataset (SQuAD) [67]. Although NLP work-
loads are typically executed on the cloud, we include ALBERT as
a forward-looking application, particularly with the growing con-
cerns around speech privacy, and increasing demand for offline
operation (when the earable is not connected to the Internet).

2.4 Spatial Awareness
Head Motion Tracking (HMT) uses an inertial-measurement unit
(IMU) consisting of a gyroscope, an accelerometer, and a magne-
tometer to track the angular position of the user’s head [46]. In
HMT-1, the IMU provides samples at 100Hz, and the HMT applica-
tion updates its estimate of angular position at 10Hz. In HMT-10,
the IMU sampling rate is 1000Hz, while the estimates are still per-
formed at 10Hz. HMT allows a user to control the earable (or other
devices connected to the earable) via head gestures.

TLIO-ResNet or 1D-ResNet18 is used in Tight Learned Inertial
Odometry [49] for localization and navigation with six IMUs sam-
pled at 200Hz. TLIO-ResNet uses 1D convolution layers. The net-
work outputs estimates of displacement and uncertainty.

Extended Kalman Filtering (EKF) estimates the hidden state of
a dynamic system given a discrete time series of noisy observa-
tions. The EKF extends the Kalman filter to cases where the state-
transition model and observation model are differentiable functions
of the hidden state, rather than simply linear. Noise is assumed to
be Gaussian while the hidden process upholds the Markov property.
The EKF application in EarBench estimates the orientation of a
device from the IMU data.

Table 1 shows the inputs, outputs details, and timing require-
ments of various EarBench applications. For these inputs, Table
3 shows the dynamic instruction count (in millions), resident and
working set sizes (in MB), dynamic instruction composition (compu-
tation, conditional and unconditional branch, and memory accesses
in percentage), and ratio of floating point adds to multiplication
instructions2 for the different EarBench applications (when pro-
filed using armv8-QEMU [9]). We notice that the applications vary
widely in complexity: DeepSpeech executes 250×more instructions
2Wave2Letter code was integer-based.

3

Table 2: EarBench: Execution characteristics. ‘RSS’ and ‘WSS’ are
resident and working set sizes in MB. ‘Comp.’, ‘Cond.’, ‘Uncond.’, and
‘Mem.’ columns correspond to the percent of dynamic instructions
categorized as computation, conditional branching, unconditional
branching, and memory accessing, respectively. ‘Inst. Count’ is the
dynamic instruction count (in millions). ‘FPA2M’ is the ratio of
floating point arithmetic to bytes of memory accessed (Wav2letter
uses integer arithmetic only).

RSS WSS Inst. Count Comp. Cond. Uncond. Mem. FPA2M

TinySR 1.56 0.07 313 36.5 4.4 2.2 56.9 0.518
HMT 1.77 < 0.01 14 49.2 4.4 3.4 42.7 0.878
Ambisonic 6.82 5.42 2,795 51.9 7.2 1.4 39.5 1.27
SpeakerAuth 6.40 3.62 1,520 26.6 15.4 1.5 56.4 1.07
HRTF 8.95 3.97 2,712 59.4 12.6 1.3 26.7 1.49
DeepECGCNN 1084 1071 3,295 72.5 14.4 0.01 13.1 1.00
DeepSpeech 226 195 3,486 30.6 3.3 16.8 49.3 1.07
TLIO 39.8 0.5 87 69.0 17.4 0.37 13.1 1.00
Wav2Letter 29.7 28.1 1,077 79.4 2.01 0.06 18.4 (N/A)
EKF 8.9 0.63 1,351 44.9 14.0 4.76 36.2 0.760
ALBERT 773 767 15,213 73.7 1.77 0.18 24.3 1.00

than HMT, and working set sizes range from under 10 kB to over
1GB. The applications are characterized by large amounts of com-
putation and data movement and small amounts of control flow
(only DeepSpeech has over 20% of its instructions as branches).

The ratio of computation to memory accesses varies. In the
convolutional neural networks (TLIO, DeepECGCNN, Wav2Letter),
we see high ratios of compute to memory instructions due to the
data reuse available in convolution layers. We see considerably
more data movement in DeepSpeech, which prominently features
dense layers, as data reuse is more difficult to achieve on dense
layers than on convolution layers in a register-limited ISA such
as ARMv8-A. The computation itself is dominated by adds and
multiplies. On neural network benchmarks, we see similar numbers
of floating point addition and multiplication instructions (nearly
identical on DeepSpeech, DeepECGCNN, and TLIO). Since these
workloads feature large amounts of linear algebra (i.e., computing
inner products of vectors), it is understandable that the ratio of
additions to multiplications is near one.

3 THE EARABLE APPLICATION-HARDWARE
PERFORMANCE GAP

Today’s earables, including programmable ones, do not run most
applications in EarBench (e.g., large-vocabulary speech recognition,
natural language processing, tight localization, etc.) and support
limited version of other EarBench applications (in form of wake
word detection, speaker identification, etc.). To understand howwell
today’s programmable earable processors meet the needs of future
earable applications, we simulated the execution of EarBench ap-
plications on processors modeled after ARM Cortex-M4@180MHz
and Cortex-M7@480MHz (methodology details in Section 5). We
chose M4 and M7 since they are already found in several of today’s
programmable earable SoCs (e.g., CYW20721,SAM-S70S, etc.) either
as standalone processors or in conjunction with DSPs. We refer to
the cores modeled after M4 and M7 as s_180 and ss_480. respec-
tively. We also run the applications on ss_1000, a core modeled after
A53@1GHz, even though it is much more complex than the MCUs

on today’s earable SoCs and has unacceptably high power con-
sumption (276mW to 339mW) for earable batteries (e.g., 45.4mAh
battery for AirPods Pro). We measure the runtime of each appli-
cation on the three modeled cores, and then compare the runtime
with the application’s timing requirement (listed in Table 1).

Figure 2 shows the amount of speed-up required on each plat-
form to meet each application’s timing requirement. We notice that
s_180 is not able to meet the performance requirements of any of
our applications. On average, s_180 requires 13.5× speed-up across
EarBench applications. ss_480 running at 2.67× higher frequency
than s_180 is not able to meet the performance requirements of
many EarBench applications. On average, ss_480 requires 4× speed-
up across our audio benchmarks. Even ss_1000 is unable to meet the
performance requirements of several of our EarBench applications,
in spite of being much more complex and power-hungry. On aver-
age, ss_1000 requires 1.9× speed-up across EarBench benchmarks.

For the small number of cases where performance requirements
are met (mostly by the complex ss_1000), functionality is severely
restricted due to energy constraints. Figure 3 shows the number of
times an application whose performance requirements were met
will run before a 45.4mAh, 3.7 V battery— similar to one in AirPods
Pro earbuds— runs out. Value for a (core, application) pair is empty
if application performance requirements were not met by the core
for that application. Figure 3 shows that Ambisonic-2 can run 198
times on ss_1000. Considering that our Ambisonic-2 benchmark
takes a 10s audio as input (Table 1), this corresponds to only 0.55
hours of audio decoding. Similarly, 201 runs of DeepECGCNN will
correspond to ≈ 0.5 hours of ECG data analysis in a continuous
usage mode. Therefore, simply using complex microprocessors (e.g.,
ss_1000 or higher) to support programmable earable computing
may be unacceptable.

3.1 Key Computation Kernels
We analyze the EarBench suite to identify the key computation
kernels in earable applications. Figure 4 shows the performance
breakdown of the EarBench applications across constituent kernels
on a single Cortex A72 (profiling was performed on Raspberry Pi
4). Applications were compiled with gcc 9.2 and rustc 1.5 with ‘O3’
optimizations (which include SIMD auto-vectorization).

Figure 4 shows that EarBench applications are built out of a small
number of computationally intensive DSP and ML kernels. At first
glance, this commonality of kernels in applications across a wide
range of use-cases (e.g., audio playback, text processing, heart-rate
monitoring, speech processing, etc.) may seem surprising. How-
ever, note that these applications are implemented broadly using
techniques from digital signal processing and machine learning;
DSP and ML computation are well-known to both be dominated
by a small number of computation kernels and share computation
kernels between them [56].

3.2 Computational similarity between DSP and
ML Kernels

Machine learning and DSP kernels have similar computation. A
neural network consists of an alternating sequence of linear trans-
formations and non-linear activation functions. Computing the
action of a linear transformation,𝑊 , on an input vector, 𝑎, is given

4

Figure 2: Required Speed-up for different modeled microprocessors across EarBench applications.

Figure 3: Number of runs possible on a 45.4mAh, 3.7V battery

Ti
ny

SR

D
ee
pS

pe
ec
h

A
m
bi
so
ni
c

H
M
T

H
RT

F

Sp
ea
ke
rA

ut
h.

A
LB

ER
T

D
ee
pE

CG
CN

N

W
av
2l
et
te
r

TL
IO
-R
es
N
et

EK
F

0

20

40

60

80

100

FFT
Conv1D
GEMM
GEMV
Bilinear
Conv2D
LU
Rest

Figure 4: Constituent kernels of EarBench applications.
by 𝑏 =𝑊𝑎. Given a choice of basis,𝑊 and 𝑎 can be expressed in
matrix form, and computing the 𝑖’th output of 𝑏 is

𝑏𝑖 =

𝑁−1∑︁
𝑛=0

𝑎 𝑗𝑊𝑖 𝑗 . (1)

Similarly, computing the 𝑁 -point discrete Fourier transform (DFT)
of a real or complex vector, 𝑥 , is given by the linear transformation
𝑋 =𝑊𝑥 , and𝑊𝑛𝑘 = 𝑒−𝑖2𝜋/𝑁 is an element of the order 𝑁 subgroup
of the unit circle group. Thus, the ‘frequency-domain’ output

𝑋 [𝑘] =
𝑁−1∑︁
𝑛=0

𝑥 [𝑛]𝑊𝑛𝑘 (2)

is remarkably similar to the core computation of a neural network.
Two factors complicate using a substrate optimized for ML kernels
to be used for DSP kernels and vice versa. First, neural networks

typically are real-valued, while DFT is complex valued. Second,
symmetries in the DFT’s transformation enable a ‘fast’ 𝑂 (𝑛 log𝑛)
Fourier transform by recursively subdividing the 𝑁 -point DFT into
smaller and smaller sub-blocks. Similarly, neural networks often
exploit symmetries of their own to greatly reduce required com-
putation and data movement by using convolution layers. Despite
these complications, striking similarities remain. Both DFT and
neural network computations are made up of real-valued multipli-
cations followed by additions/subtractions, and in both the number
of multiplications needed is nearly identical to the number of addi-
tions/subtractions needed. This suggests that an efficient processor
architecture for earable applications is a neural network accelerator
that is augmented with support for complex processing and that
can be reconfigured to support different dataflows for the different
ML and DSP kernels.

Furthermore, since the dataflows of dot-product and complex
multiplication, the key subcomputations of neural networks and
FFT, respectively, consist of scattering data streams to multipli-
cation units, followed by reduction (dot-product) and gathering
into an output stream (complex multiplication), an architecture
which enables scatter-multiply-reduce and scatter-multiply-gather
is needed (Figure 5). High bandwidth tree-structures for both the
scatter network, and for the reduction/gather network should en-
able efficient computation of machine learning and DSP workloads.

Figure 5: Dataflows for dot-product (left) and complex multiplica-
tion (right).

4 SPEAC: A SPATIAL ARCHITECTURE
FOR EARABLE COMPUTING

We propose SpEaC3 - a stream-programmed [57] coarse-grained
reconfigurable spatial architecture (Figure 6) as an energy-efficient
programmable processor for earable applications. At high level,

3Spatial Earable Computer

5

Figure 6: Architecture of SpEaC.

(a) LVM Standard Configuration

(b) LVM Exchanged
Configuration

(c) LVA

Figure 7: Logical Vector Multiplier (LVM) and Logical Vector Adder
(LVA) support complex arithmetic in SpEaC.

SpEaC consists of two parts - a reconfigurable computation sub-
strate that is responsible for executing kernels and a tightly coupled
control core that is responsible for configuring the substrate, gen-
erating data streams, and executing kernel operations not directly
supported by the substrate. Below we describe the substrate and
the control core one by one.

Since earable applications are dominated by a small number of
DSP and ML kernels which in turn are dominated by inner-product-
based computation, SpEaC computation substrate consists of a set
of 15 adders (8 of which are organized in pairs - explained later)
and 16 multipliers (organized as 8 pairs - explained later). Table 2
suggests an equal distribution of multipliers and adders; the actual
number of units was chosen such that SpEaC power remains around
60mW. A fat distribution tree [47] feeds SpEaC’s 16 multiplier units.
The products of the multiplier units are forwarded to 15 adders
organized in an ‘augmented reduction tree’, which allows a single
tree to perform multiple inner products concurrently, or to be time-
multiplexed to perform a large inner-product across multiple cycles.
The final three adder units are equipped with accumulators to

enable computation of multiple inner-products in parallel. SpEaC’s
accumulators may be configured to output either the accumulated
value, 𝑥 , or max {0, 𝑥}, which means SpEaC supports either linear
or reLU activation functions. SpEaC supports max-pooling layers
through the reduction tree by allowing the adder units to also
perform comparison operations.

SpEaC’s functional units support fixed-point arithmetic since
fixed-point units are significantly lower power than floating-point
units, and since the EarBench DSP and ML kernels are largely
resilient to fixed-point and integer quantization in context of audio
and machine learning workloads, [11, 19, 30, 31, 48, 80]. SpEaC uses
32-bit fixed-point arithmetic since high quality audio often has a
24-bit depth, while 16-bit fixed-point arithmetic would lower audio
quality.

Furthermore, since FFT is a key computational kernel in Ear-
Bench, SpEaC functional units support vectorized complex opera-
tions. To enable multiplication of complex numbers, two adjacent
multipliers form a pair to create a logical vector multiplier (LVM).
Each LVM can be configured to either perform a 2x32 bit multipli-
cation or a 2x32 bit multiplication in which one of the 64-bit inputs’
top and bottom 32-bits are swapped (i.e., exchanged multiplication).

Since the product of two complex numbers may be decomposed
into four real-valued partial products of the complex numbers’
components, SpEaC uses two LVMs (one in ‘Standard’ and the other
in ‘Exchanged’ configurations) to generate the partial products.
Figure 7 shows the possible configurations for a LVM. In 7a, the
LVM is configured to produce two standard or scalar multiplications.
In 7b, the LVM is configured to produce products in which the
multiplicands have been exchanged.

Also, since 𝑖2 = −1, the real component of the complex product is
produced by computing the difference of two of the partial products
while the imaginary component is produced by computing the sum
of the other two partial products. To support this, adjacent adders
in level 3 of the tree form logical vector adders (LVA). The ‘left’
adder in a LVA can be configured to perform subtraction as well as
addition. Figure 7c shows that a LVA can be configured to either
perform parallel 32-bit adds, or a 32-bit subtract and a 32-bit add.

Since complex addition does not requiremultiple or out-of-sequence
accesses to a complex number’s real and imaginary components,
no additional hardware is required to support complex addition (in
fact, complex addition may use the same dataflow as real addition).

The control core in SpEaC is a tightly-coupled scalar, in-order
CPU responsible for configuration of the SpEaC computation sub-
strate and stream-based programming. It also executes code that
does not fit well on the reconfigurable substrate, including non-
multiply or add operations in the DSP kernel code (e.g., square-root
and divide operations in LU and Cholesky).

The core orders the Configuration/Stream Manager to configure
the computational substrate, and to generate data streams. Data
streams belong to one of three classes:

• Streams with 3D affine access patterns from memory: SpEaC
supports 3D affine addressing, meaning that a single stream
can represent array access in a depth-3 nested loop.

• Recurrence streams [57], which pipe streaming outputs into
inputs;

6

• Bitstream, which is used to provide some amount of dynamic
control to the configured substrate - specifically whether the
accumulators accumulate or forward to an output stream.

SpEaC supports up to four concurrent data streams and one
bitstream.

4.1 SpEaC vs Other CGRAs
SpEaC’s architecturemost closely resembles the SoftBrain CGRA [57]
in its architecture. However, there are three significant differences.
First, SoftBrain uses general purpose functional units (since it is
aimed at supporting arbitrary workloads). SpEaC replaces Soft-
Brain’s fixed-point general purpose functional units with fixed-
point adders and multipliers - common across our DSP and ML-
based kernels. As a result, SpEaC’s functional units consume 4.42x
lower power, on average, in 28 nm technology. Second, SpEaC pro-
vides hardware support for complex arithmetic through support
for 2-element vectorized operations (2 × 32 multiplication, 2 × 32
exchanged multiplication, 2 × 32 addition, 2 × 32 sub-add). Soft-
Brain does not directly support complex arithmetic and, therefore,
kernels such as FFT cannot be mapped efficiently. Third, SoftBrain
uses a general purpose mesh network to support arbitrary work-
loads. SpEaC replaces SoftBrain’s general-purpose network with
a distribute-then-reduce tree due to the specific multiply-add and
multiply-accumulate patterns found in earable workloads. This pro-
vide a 4× savings in CGRA network power at 28 nm. Overall, SpEaC
consumes less than two-thirds the power of SoftBrain at 28 nm.
Other related work includesMAERI [42] and SNAFU [29]. Similar to
SpEaC, MAERI substrate is based on multiply-and-add trees. How-
ever, its system architecture and programming environment are
focused onML kernels. It is unclear how tomap earable DSP kernels
such as LU, Bilinear, Cholesky, and FFT directly on MAERI. There
is no programming support for non-matrix computation (Bilinear),
no hardware support on the substrate for complex arithmetic (FFT),
and no control core for running non-multiply and add operations
either (Cholesky and LU). SNAFU integrates a control core with a
CGRA and should therefore support the earable kernels. However,
SNAFU supports a general purpose CGRA substrate, not one opti-
mized for linear algebra workloads, found commonly in machine
learning and DSP applications. Unlike SpEaC, which targets linear
algebraic workloads, SNAFU’s general-purpose substrate has a high
ratio of multiplier-less ALU FUs to multiplier FUs. This means its
performance for linear algebraic workloads is multiplier limited. As
a point of comparison, [29] reports SNAFU’s performance on dense
matrix multiply with 64 × 64 matrices. SpEaC outperforms SNAFU
on this kernel by 72×. While SpEaC’s 1GHz clock rate accounts for
20× speed-up, the additional 3.6× speed-up is a result of the greater
parallelism achievable on SpEaC, due to its larger number of multi-
pliers (16 vs 4), and SpEaC’s nearly 1-1 ratio of adders to multipliers
(while SNAFU has only one multiplier for every three adders). Simi-
larly, while SNAFU’s grid-based NoC topology is useful for general
purpose programability (since it can support arbitrary dataflows),
it consumes more power than a tree-based NoC (for SpEaC, we
estimated that the tree-based NoC is ∼ 4× lower power than the
grid-based NoC). Previous work [42] has also observed that grid-
based NoCs scale poorly in power and area relative to a tree-based

Table 3: Hardware specifications of modeled processors.

Platform Hardware Description

s_180 M4 based, 32-bit, 180MHz, Power min (typical) = 0.96mW, Power max (typical) = 1.18mW, Scalar Processor,
Single cycle 16/32-bit MAC, Single cycle dual 16-bit MAC, 8/16-bit SIMD arithmetic, 1V, 28 nm,
Hardware Divide (2-12 Cycles), gem5 simulator

ss_480 M7 based, 32-bit, 480MHz, Power min (typical) = 17mW, Power max (typical) = 20.7mW, 6-stage superscalar
+ branch prediction, Single cycle 16/32-bit MAC, Single cycle dual 16-bit MAC, 8/16-bit SIMD, 1V, 28nm,
arithmetic, Hardware Divide, gem5 simulator, 32 kB L1D cache, 32 kB L1I cache

ss_1000 A53 based, 64-bit, 1GHz, Power min (typical) = 276mW, Power max (typical) = 339mW, Superscalar Processor,
gem5 simulator, L1D cache size = 32 kB, L1I cache size = 32 kB, 28 nm

hifi4_dsp HiFi4 DSP core, 32-bit, 600MHz, Power (typical) = 234mW, 4 VLIW slots
4 32 × 32 fixed point MACs/cycle, MIMXRT685-EVK board, 1.13V, 28 nm

SpEaC CGRA based 32-bit architecture, 1GHz, Power (typical) = 63mW, Spatial Architecture,
gem5 simulator with spatial architecture simulation support, 10.1.0, DSA CGRA generator

NoC for the bandwidth values SpEaC targets. A direct compari-
son of SNAFU and SpEaC would nevertheless be interesting once
SNAFU toolchain is made public.

4.2 Programming SpEaC
As with other stream-programmed CGRAs [57], SpEaC is pro-
grammed by first generating a dataflow graph, scheduling the
dataflow graph onto the compute substrate, and then using custom
ISA instructions of the control core to generate control and stream
instructions for the computational substrate and the stream gen-
erators, as well as an instruction to block the control core until all
in-flight write streams are complete.

Dot-product computation maps naturally onto the architecture’s
reduction-tree, with the reduction tree supporting the multiplica-
tion and reduction of up to sixteen partial sums in parallel.

Figure 8: CGRA configured to perform complex multiplication. The
distribution network sends two complex numbers, 𝑐1 = 𝑅1 + 𝑖𝐼1 and
𝑐2 = 𝑅2 + 𝑖𝐼2 from two streams to two LVMs. LVM 1 is configured to
produce the two real terms of the product 𝑐1 · 𝑐2, while the LVM 2 is
configured to produce the two imaginary terms. The real terms are
then sent to an adder configured to compute the difference 𝑅1𝑅2 −
𝐼1𝐼2 (since 𝑖2 = −1), while the imaginary terms are sent to an adder
configured to compute the sum 𝑅1𝐼2 + 𝐼1𝑅2.

As discussed earlier, SpEaC substrate which uses vectorized
operations to support the FFT’s complex arithmetic. Figure 8 shows
the configuration of LVMs and LVAs necessary to perform complex
multiplication.

5 METHODOLOGY
We used Gem5 [13] to evaluate the performance of the EarBench
applications (Table 1) and the earable computational kernels. We
use a simulator instead of a real development platform since several

7

of our EarBench applications have much larger memory require-
ment (Table 2) than what is available on these platforms (and since
the platforms do not support the non-RTOS operating system ab-
stractions required by several of our Linux EarBench applications).
We compiled the kernels and applications to the ARMv8-A ISA,
even though Cortex M4 and M7 feature the ARMv7-M ISA, since
Gem5 supports ARMv8-A rather than ARMv7-M.

We compiled EarBench applications on a Raspberry Pi 4 (Cortex-
A72) using gcc 9.2.0. We compiled the HRTF benchmark, written
in Rust, with rustc 1.50.0. We used ‘O3’ compiler flag and enabled
NEON SIMD auto-vectorization.4 We used hand-optimized ver-
sions of the earable kernels for our evaluations. Kernels were hand-
optimized for the MCUs and the parameters of the data structures
and operations were defined inside the program itself, allowing the
compiler to perform several optimistic optimizations. Our hand-
optimized implementations consistently beat the off-the-shelf ker-
nel implementations from the muFFT [8] and LAPACK [3] libraries
for our inputs, setting up a conservative comparison of MCUs
against SpEaC.

In addition, we generate measured kernel-level results (using
CCOUNT register) for a state-of-art Tensilica HiFi4 DSP running at
600MHz on a MIMXRT685-EVK board. We used DSP kernels from
the performance-optimized NatureDSP library [34]. Three kernels
(LU, bilinear, and Cholesky) that were not present in the NatureDSP
library were hand-written and optimized.

For power modeling, we use Gem5’s IPC-driven ARM power
modeling methodology [13]. Datasheets for the M4 [6], M7 [7],
A53 [5], and HiFi4 [17] cores are used for calibration such that the
mean andmaximum power numbers reported by our models for our
applications match the corresponding typical power consumption
numbers in the datasheets. Similar methodology has been used in
many previous works [40].

We used the DSA-Framework [77] to evaluate SpEaC, includ-
ing its power and area. We specify the CGRA substrate using a
domain-specific language built on top of JSON. DSA-Framework
then schedules given DFGs onto the specified CGRA. The frame-
work enables programming of the CGRA via a RISC-V (RV64-MC)
control core with a customizable ISA extension for stream-based
spatial accelerators. Benchmark kernels are written in C++ with
in-line assembly for the extension instructions, and compiled with
gcc 10.1.0. We then simulate SpEaC with a cycle-accurate model in
Gem5 running at 1GHz.

6 RESULTS AND ANALYSIS
Figure 9 presents speed-up results for SpEaC against the modeled
cores. Across the computation kernels, SpEaC is 5.1 to 195× faster
than s_180, 1.2 to 35× faster than ss_1000, and 3.8 to 12.5× faster
than the HiFi4 DSP. SpEaC outperforms ss_1000 by an average of
11× and outperforms the HiFi4 DSP by an average of 6.57×.

Table 4 shows the power and area of SpEaC at 28 nm technology.
Power and area for the data cache are generated with cacti [55].
The remainder of the numbers are reported by DSAGen Framework
and then scaled to 28 nm.

In spite of running at 1GHz, SpEaC consumes only 64mW. For
comparison, we note that ss_1000 - the only other core running

4Full details of ARMv8-A build will be published with the EarBench suite.

Sp
Ea

C
 S

pe
ed

-u
p

1

2

4

6
8

20

40

60
80

200

GEMV GEMM Conv1D Conv2D LU Bilinear Cholesky FFT AVG

vs s_180 vs ss_480 vs ss_1000 vs hifi4_dsp

Figure 9: Speed-up of SpEaC over modeled cores.

Figure 10: Percentage of total energy consumed by arithmetic
functions across kernels.

Table 4: Power and area of SpEaC in 28 nm technology. The CPU
core is a scalar, in-order RISC-V core with 32 KiB of cache.

Component Area (mm2) Power (mW)

Substrate 0.04 20.05
Network 0.004 1.2

FU Buffers 0.02 13.6
Stream Engines 0.006 8.38

CPU Core 0.04 7.5
Data Cache 0.06 10.5
Scratchpad 0.039 2.6

Total 0.209 63.8

at 1GHz - and HiFi4 consume 276mW to 339mW and 234mW
respectively. So, SpEaC consumes much less power than these cores
while providing much higher performance.

Figure 11 shows the energy benefit of SpEaC relative to the
baseline cores. The benefits are up to 160× compared against the
microprocessors, and up to over 42× compared to the DSP.

Figure 10 shows the percentage of total energy consumption
consumed by adders and multipliers for the kernels. GEMV, with its
low data reuse, has the lowest FU utilization and, correspondingly,
has the lowest portion of energy consumed by arithmetic. Similarly
Cholesky and LU decomposition, which rely on the scalar control
core for portions of their computation, also have low portions of
energy consumed by arithmetic. The high overhead of control and
data movement reinforce the importance of minimizing the CGRA
network costs (using a tree, for example), the use of specialized FUs
(using only fixed point adders and multipliers on the substrate, for
example), and the associated memory system.

Using kernel speed-up values from simulation, and with the
kernel-breakdown of Figure 4, we estimate the application level

8

En
er

gy
 Im

pr
ov

em
en

t F
ac

to
r

1

5

10

50

100

GEMV GEMM Conv1D Conv2D LU Bilinear Cholesky FFT AVG

vs s_180 vs ss_480 vs ss_1000 vs hifi4_dsp

Figure 11: Energy improvement from SpEaC over modeled cores.

Table 5: Latency and power of different non-compute com-
ponents of an earable system.

latency Power
Microphone [35] ∼30 µs to 50 µs ∼1.17mW
Speaker [26] ∼50 µs 10mW
IMU [50] ∼1ms to 10ms ∼3.96mW
BLE TX/RX [71] 8 µs B−1 84mW / 66mW

Figure 12: Runtime (in seconds) of different EarBench appli-
cations on SpEaC.

speed-up and energy benefits of SpEaC. Compared against ss_1000,
significant application level speed-ups are significant: 3.3× for Deep-
Speech and Ambisonic, 6.6× to 9.6× for HRTF audio, 3.6× for the
ResNet, 2.2× for ALBERT, 6.4× for DeepECGCNN, and 8.3× for
WaveToLetter. In fact, these speed-ups are achieved despite ss_1000
consuming 2× to 2.5× more power than SpEaC. These speed-ups
are large enough to allow SpEaC to meet the application-level re-
quirements of all applications, except ALBERT and EKF (Figure 2).
Recall that s_180, ss_480, and ss_1000 met requirements for 0, 2,
and 6 applications respectively (Figure 2).

Figure 12 shows the application level latency (in seconds) of
different EarBench applications on SpEaC.

To understand the system-level impact of SpEaC, we also con-
sider non-compute components. Table 5 lists power and latency
of several non-compute components. The latency overhead of the
non-compute components is much smaller than the estimated la-
tency of Earbench applications on SpEaC (Figure 12). We estimate
that, compared to s_180, ss_480 and ss_1000, the speedup of SpEaC

Figure 13: Number of runs on SpEaC on a 45.4mAh, 3.7V
battery

on-average across all EarBench applications is only reduced by
0.67%, 0.51% and 0.33% respectively, when the latency of all the non-
compute components in Table 5 is added. We similarly estimated
(Figure 13) the number of times different EarBench applications
whose performance requirements are met by the SpEaC can be run
on the SpEaC given the energy budget of a 45.4mAh, 3.7 V battery.
Our results show that even when microphone, speaker, BLE and
IMU sensor are simultaneously consuming battery energy, the Ear-
Bench applications can still run hundreds of times. E.g. DeepSpeech
on 5s audio can run 849 times before battery needs recharging; this
corresponds to large-vocabulary speech recognition for 1.14 hours.

Finally, to validate our estimates, we ported TinySR to SpEaC,
implementing the FFT component on the CGRA. Based on TinySR’s
estimates, we had expected to see a 2.7× speed-up on SpEaC. Simu-
lation of the SpEaC port of TinySR showed a 2.5× speed-up, a −7%
error versus our analytic estimate. A 2.5× performance improve-
ment on TinySR also corresponds to a 5.8× improvement in energy
efficiency, and a 14.4× improvement in EDP.

6.1 SpEaC vs Low-power GPUs and ML
Accelerators

We evaluated a subset of earable kernels on four shader core group
of a Mali T628 MP6 GPU (Table 6) on a 28 nm Exynos 5422 SoC
programmed in OpenCL using the T628-tuned CLBlast [58] library
for BLAS functions, and vexcl [24] for FFT implementation. 5 Kernel
level results for T628 versus SpEaC are shown in Figure 14 for inputs
scaled by different factors up to 32 or until GPU memory runs out
(T628’s high kernel launch cost is amortized for larger inputs).

We find that SpEaC and T628 performance values are, in general,
within an order of magnitude of each other for all but the smallest
inputs. We attribute SpEaC’s strong performance relative to the
T628 to 1) SpEaC’s tight integration with the control core (mobile
GPU kernel launch overhead has been shown to contribute signif-
icantly to machine learning inference latencies [39], and indeed,
T628 performance relative to SpEaC improves with kernel size), 2)
its higher clock frequency (1GHz vs 600MHz), and 3) its decou-
pled access/execute architecture which uses streaming engines to
overlap address calculations with useful computation on the SpEaC
substrate (while T628 uses the same ALUs to perform address cal-
culations and useful computation). At the same time, T628 power
is more than an order of magnitude higher (30× for an estimated
𝑃typical = 1.8W) due to use of floating point arithmetic (vs fixed

5We do not include Cholesky or LU since they require a significant number of memory
barriers and operate on small dimensional matrices in our applications making them
un-competitive on T628.

9

Table 6: Hardware configuration of the modeled accelerators.

Processor Hardware configuration

Mali T628 4 Shader cores @ 600MHz with 2 ALUs. SIMD f32×4 Add, SIMD f32×4 Mul,
R4 inner product, scalar f32 Add, scalar f32 Mul per ALU.
Rasterizer, triangle set-up unit, Z-buffer per core.

Eyeriss 16 PEs @ 1GHz, one MAC per PE,
16-bit MACs, 0.5KB SRAM per PE, 108KB global buffer

MAERI 16 Multiplier Switches (PEs) @1GHz, Distribution Bandwidth = 4 elements,
Reduction Bandwidth = 1 elements

point adders and multipliers in SpEaC), general-purpose architec-
ture (SpEaC uses a tree of adders and multipliers customized to
our kernels), and presence of dedicated graphics pipelines (that add
static power). This leads to more than an order-of-magnitude better
energy-efficiency for SpEaC over T628 for the evaluated kernels
for all kernel/size pairs.

(a) Performance (b) Energy

Figure 14: Performance and energy of a 4 shader-core T628 GPU
for different input sizes vs SpEaC.

0.5

1

5

10

50

100

conv2d conv1d gemm gemv DFT

Eyeriss: Normalized Latency Eyeriss: Normalized Energy MAERI: Normalized Latency MAERI: Normalized Energy

Figure 15: ML accelerators vs SpEaC.

ML accelerators are a poor standalone fit for earable comput-
ing since they are fundamentally limited in their generality; it
is unclear how to map earable DSP kernels such as LU, Bilinear,
Cholesky, and FFT directly on ML accelerators such as Eyeriss [21]
or MAERI [42] due to their lack of programming or hardware
support for non-matrix computation, complex arithmetic, or non-
multiply or add operations. For other kernels, we nevertheless com-
pared SpEaC against scaled down versions of Eyeriss and MAERI
using NN_dataflow and MAERI-mapper [41] respectively. For en-
ergy evaluations of scaled down MAERI, we used MAERI RTL
generator [41] to generate synthesizable RTL which we then syn-
thesized using Synopsys design-compiler. The hardware parameters
of the modeled architectures are listed in Table 6.

Figure 15 shows the latency and energy of the ML kernels on
scaled-down Eyeriss and MAERI, normalized with respect to SpEaC.

Our results show that Eyeriss and MAERI outperform SpEaC on
most ML kernels. This is because SpEaC has lower amount of on-
chip memory (e.g., 40 KB between data cache and scratchpad in
SpEaC vs 80 KB in MAERI) and incurs the overheads of the con-
trol core (MAERI and Eyeriss results do not include control core
overheads). We also show results for discrete Fourier transform
(DFT). Since FFT cannot be easily mapped to Eyeriss or MAERI, we
investigated if the choice of an ML accelerator-friendly algorithm
- we perform DFT via matrix operations - can give competitive
performance. However, SpEaC significantly outperforms the ML
accelerators on DFT. Our results show that, compared to DFT on
Eyeriss, the equivalent FFT on SpEaC is 36.77× faster and 124×
more energy efficient. Compared to DFT on MAERI, the FFT on
SpEaC is 73.54× faster and 21.9× more energy efficient.

Overall, the results show that GPUs are far too energy-inefficient
for earable kernels (while also being unable to directly support a
subset of them). ML accelerators, on the other hand, cannot support
several earable kernels. SpEaC provides energy-efficient execution
for all earable kernels.

6.2 SpEaC vs a collection of accelerators
One possibility is to support multiple fixed function accelerators
on the earable SoC each targeting a different set of kernels. For
example, an SoC with a CPU, an ML accelerator, and an FFT ac-
celerator looks attractive for our applications. However, there are
several disadvantages of such an approach. One, the field of earable
computing is relatively new and algorithms are still evolving. Any
system with fixed functions ASICs may become obsolete quickly.
SpEaC, on the other hand, can be configured easily to any new al-
gorithm whose dataflow graph is dominated by adds and multiplies.
Second, a collection of special purpose accelerators will fail to pro-
vide the requisite performance for kernels that do not map well to
an existing accelerator. For example, LU, Bilinear, and Cholesky see
significant speedups on SpEaC. However, they cannot be mapped
directly on an ML accelerator or an FFT accelerator and will need
to be run on the CPU at high performance cost (Figure 9). Simi-
larly, a given kernel may not fit its fixed function accelerator well
depending on the input. For example, FFT size in tinySR, depends
on input audio length and, for our microphone input, varies from
32-point to 1024-point, HRTF calls a 4096-point FFT, Ambisonic
uses a 512 or 1024-point FFT, etc. Many FFT accelerators are opti-
mized for a specific size [79] and will not run other FFTs of other
sizes efficiently [1]. SpEaC, on the other hand, can efficiently sup-
port arbitrarily-sized FFTs. Third, SpEaC may even have efficiency
advantages for our specific kernels over using a separate FFT accel-
erator. SpEaC can already be thought of as an𝑀𝐿+𝐹𝐹𝑇 accelerator.
Its design is heavily based on MAERI, an ML accelerator, and its
use of 3D-affine streams and logical vector units enables efficient
computation of FFT on the same substrate. As a point of compar-
ison, the area and power overheads of the LVM versus a pair of
multipliers are 8.8% and 11.6% respectively, which corresponds to a
total overhead of 1.7% and 3.6%, respectively. Adding a dedicated
FFT accelerator of equal or greater performance would require
an additional 16 multipliers, an area overhead of 19.3% without
accounting for additional FFT accelerator control, compute, and
routing, and power gating logic. Finally, a single design (SpEaC)

10

that can target many applications may be more cost-effective than
a design with many unique ASICs.

6.3 SpEaC vs Offloading

(a) Kernels (b) Applications

Figure 16: Communication energy of BLE transceiver when
inputs and outputs are transmitted over BLE for remote com-
pute offloading, normalized with respect to the energy con-
sumed by SpEaC when kernels and applications are com-
puted locally.

A natural question comes up of weather to offload compute to
mobile device (using BLE, for example) - this will invovle sending
inputs and outputs over the communication protocol - or compute it
locally on SpEaC? Figure 16-a shows the communication energy of
BLE transceiver normalized with respect to the energy consumed by
SpEaC when we run the kernels locally on SpEaC. Our results show
that computing kernels locally on SpEaC is on average ≈ 4𝑂𝑂𝑀
more energy efficient compared to communicating inputs/outputs
over BLE. This is not surprising since BLE consumes significant
amount of energy (≈ 0.7 µJ B−1 [71]) when sending large matrices,
which are common inputs to our kernels, due to its long commu-
nication latency. Similarly, figure 16-b shows the communication
energy of BLE transceiver normalized with respect to the energy
consumed by SpEaC when we run the entire application locally on
SpEaC. Our results show that for compute intensive applications,
e.g. Albert, it is more energy efficient to offload compute to remote
device, whereas for all other applications computing applications
locally on SpEaC is more energy efficient than offloading the com-
pute to remote device over BLE. On average computing locally on
SpEaC is ≈ 12.7× more energy efficient across all our applications
compared to communicating inputs/outputs over BLE. Other than
energy benefits, local computation may often be preferred also for
improved latency, privacy, and usability (since a remote device may
not always be available or accessible).

6.4 Configurable precision SpEaC (cpSpEaC)
The primary reason to use a 32 bit datapath is to support audio
applications (since high-quality audio has 24b depth). However,
several Earbench applications can be implemented at lower preci-
sion without a significant drop in accuracy. [81] shows that an 8-bit
implementation of BERT maintain 99% of the FP32 accuracy. ARM
ML Zoo [82] provides an 8 bit implementation of wav2letter that is
able to achieve 87.7% accuracy on Librispeech dataset. TLIO uses
ResNet18 as a backend, which can be at 8-bit precision without
significant decrease in accuracy drop [74] [51]. [20] presents an 8
bit implementation of EKF that was able to achieve the required

Table 7: Area and power overhead of supporting multiple
datatypes with the configurable-precision (cpSpEaC) variants
of SpEaC. The ‘tree’ variants replicate the functional units,
one for each datatype supported and are denoted denoted
by 𝑡 (𝑥) subscript, where 𝑥 is a list of operand bit-widths sup-
ported. As in SpEaC, each tree contains 16 multipliers. The
‘multi’ variants, denoted by subscript𝑚(𝑥), contain vector
functional units capable of supporting 1× 32-bit operation,
2× 16-bit operations, and 4× 8-bit

Area (mm2) Power (mW)

Separate NoC/Buffers
cpSpEaCt(32, 16) 0.221 (40.4, 65.3)
cpSpEaCt(32, 16, 18) 0.227 (33.9, 65.4)

Shared NoC/Buffers
SpEaC (32-bit) 0.209 63.8
cpSpEaCt(32, 16) 0.220 67.8
cpSpEaCt(32, 16, 18) 0.223 69.0
cpSpEaCm(32, 16) 0.212 63.8
cpSpEaCm(32, 16, 8) 0.216 63.8

prediction accuracy for the battery management system (BMS) in
mobile robots. SpEaC can be modified to support multiple precision
datatypes at small overhead. Table 7 shows the area and power
overheads of several approaches to multiple precision support. In
the ‘tree’ approach, the substrate’s functional units are duplicated
for each datawidth. If each tree is supplied its own NoC and buffers,
coarse-grained power gating can provided significant power sav-
ings when using 16-bit or 8-bit datatypes, at the cost of additional
area for the duplicated structures. When the trees share the same
NoC and buffers, coarse-grained power gating may be difficult to
use, however, the power overhead of the duplicated functional units
is less than 10% of SpEaC’s overall power. In the ‘multi’ approach,
each functional unit is replaced with an equivalent vector-unit,
which can perform 1 × 32 bit operation, 2 × 16 bit operations, or
4 × 8 bit operations. SpEaC’s 32 bit adders are replaced with four
8 bit adders, and the carry-outs of the lower-significance adders
are masked by control signals, and then fed as the carry-ins to the
higher-significance adders. This slow, ripple-carry adder still meets
timing at 28 nm. SpEaC’s 32 bit multipliers are replaced by sixteen
8 bit multipliers, arranged in a 4 × 4 grid. The multiplier at position
𝑖, 𝑗 computes the product of the 𝑖’th byte of the first operand with
the 𝑗 ’th byte of the second operand. These partial products are
sufficient to compute the 32 bit, 16 bit, and 8 bit products. SP&R re-
ports negligible difference in power and an area increase of no more
than 11.2% between the standard multiplier and the multi-precision
vector multiplier.

7 SUMMARY AND CONCLUSION
In this paper, we addressed the question: what kind of programmable
hardware would be needed to support earable computing in the
future? We proposed EarBench, a suite of representative emerg-
ing earable applications. Our analysis of EarBench applications
showed that, on average, there is a 13.54× and 3.97× performance
gap between the computational needs of EarBench applications

11

and the performance of the microprocessors that several of today’s
programmable earable SoCs are based on; more complex micropro-
cessors were shown to have unacceptable energy efficiency for Ear-
able applications. We profiled EarBench applications to identify the
commonly occurring computation kernels in earable applications.
Based on the characteristics of these kernels, we propose SpEaC—
a stream-programmed, control core-integrated CGRA optimized for
earable computation kernels. SpEaC, on average, outperforms cores
modeled after M4, M7, A53, and HiFi4 DSP by 99.3×, 32.5×, 14.8×,
and 9.8×, respectively. The energy efficiency benefits are 1.55×,
9.04×, 68.3×, and 32.7×, on average; energy efficiency benefits are
15.7 × −1087× over a low power Mali T628 MP6 GPU.

8 ACKNOWLEDGEMENTS
We thank Prof Romit Roy Choudhury for his compelling vision of
earable computing and he and his students for multiple discussions
about earable applications. We thank the anonymous reviewers as
well as the members of the Passat group for their feedback and the
NSF for partial support.

REFERENCES
[1] Berkin Akın, Franz Franchetti, and James C. Hoe. 2014. Understanding the design

space of DRAM-optimized hardware FFT accelerators. In 2014 IEEE 25th Inter-
national Conference on Application-Specific Systems, Architectures and Processors.
IEEE, Manhattan, NY, 248–255. https://doi.org/10.1109/ASAP.2014.6868669

[2] Amazon. 2021. Echo Frames. Amazon. https://www.amazon.com
[3] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James

Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling,
Alan McKenney, et al. 1999. LAPACK Users’ guide. SIAM, Philidelphia, PA.
https://www.netlib.org/lapack/lug/

[4] Apple. 2021. Airpods Max. Apple. https://www.apple.com/airpods-max/
[5] ARM. 2021. Cortex-A53. Arm Ltd. https://developer.arm.com/documentation/

ddi0500/j/Cortex-A53
[6] ARM. 2021. Cortex-M4. Arm Ltd. https://developer.arm.com/ip-products/

processors/cortex-m/cortex-m4
[7] ARM. 2021. Cortex-M7. Arm Ltd. https://developer.arm.com/ip-products/

processors/cortex-m/cortex-m7
[8] Hans-Kristian Arntzen. 2021. muFFT. https://github.com/Themaister/muFFT
[9] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX

annual technical conference, FREENIX Track, Vol. 41. Califor-nia, USA, USENIX
Association, Bostn, MA, 46. https://www.usenix.org/legacy/event/usenix05/
tech/freenix/full_papers/bellard/bellard.pdf

[10] K Swetha Bharati and Ashok Jhunjhunwala. 2015. Implementation of machine
learning applications on a fixed-point DSP. In 2015 IEEE 28th Canadian Conference
on Electrical and Computer Engineering (CCECE). IEEE, Manhattan, NY, 1458–1463.
https://doi.org/10.1109/CCECE.2015.7129495

[11] K Swetha Bharati and Ashok Jhunjhunwala. 2015. Implementation of machine
learning applications on a fixed-point DSP. In 2015 IEEE 28th Canadian Conference
on Electrical and Computer Engineering (CCECE). IEEE, Manhattan, NY, 1458–1463.
https://doi.org/10.1109/CCECE.2015.7129495

[12] Thomas Bible. 2016. Binaural Audio for Narrative VR. https://www.oculus.com/
story-studio/blog/binaural-audio-for-narrative-vr/

[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7. https://dl.acm.org/doi/abs/10.1145/2024716.2024718

[14] Bose. 2021. Bose Frames Tenor. Bose. https://www.bose.com/en_us/products/
frames/bose-frames-tenor.html

[15] Bose. 2021. Bose QuietComfort Earbuds. Bose. https://www.bose.com/en_us/
products/headphones/earbuds/quietcomfort-earbuds.html

[16] Bose. 2021. Bose Sport Earbuds. Bose. https://www.bose.com/en_us/products/
headphones/earbuds/bose-sport-earbuds.html

[17] Cadence Design Systems, Inc 2020. Tensilica HiFi DSP Family. Cadence Design
Systems, Inc.

[18] Martin Campbell-Kelly, William Aspray, Daniel P Snowman, Susan R McKay,
and Wolfgang Christian. 1997. Computer A history of the information machine.
Computers in Physics 11, 3 (1997), 256–257. https://aip.scitation.org/doi/pdf/10.
1063/1.4822551

[19] Wei-Hsin Chang and Truong Q Nguyen. 2008. On the fixed-point accuracy
analysis of FFT algorithms. IEEE Transactions on Signal Processing 56, 10 (2008),
4673–4682. https://ieeexplore.ieee.org/abstract/document/4626107/

[20] Arezki Abderrahim Chellal, José Lima, José Gonçalves, and Hicham Megnafi.
2021. Battery Management System For Mobile Robots based on an Extended
Kalman Filter Approch. In 2021 29th Mediterranean Conference on Control and
Automation (MED). IEEE, IEEE, Manhattan, NY, 1131–1136. https://ieeexplore.
ieee.org/abstract/document/9480196/

[21] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE journal of solid-state circuits 52, 1 (2017), 127–138. https://
ieeexplore.ieee.org/abstract/document/7738524

[22] Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. 2016. Wav2Letter: an
End-to-End ConvNet-based Speech Recognition System. CoRR abs/1609.03193
(2016). arXiv:1609.03193 http://arxiv.org/abs/1609.03193

[23] R De Lucia, G Zucchelli, V Barletta, A Di Cori, M Giannotti Santoro, M Parollo, L
Segreti, S Viani, V Della Tommasina, L Paperini, et al. 2020. The in-ear region
as a novel anatomical site for ECG signal detection: validation study on healthy

12

https://doi.org/10.1109/ASAP.2014.6868669
https://www.amazon.com
https://www.netlib.org/lapack/lug/
https://www.apple.com/airpods-max/
https://developer.arm.com/documentation/ddi0500/j/Cortex-A53
https://developer.arm.com/documentation/ddi0500/j/Cortex-A53
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://github.com/Themaister/muFFT
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://doi.org/10.1109/CCECE.2015.7129495
https://doi.org/10.1109/CCECE.2015.7129495
https://www.oculus.com/story-studio/blog/binaural-audio-for-narrative-vr/
https://www.oculus.com/story-studio/blog/binaural-audio-for-narrative-vr/
https://dl.acm.org/doi/abs/10.1145/2024716.2024718
https://www.bose.com/en_us/products/frames/bose-frames-tenor.html
https://www.bose.com/en_us/products/frames/bose-frames-tenor.html
https://www.bose.com/en_us/products/headphones/earbuds/quietcomfort-earbuds.html
https://www.bose.com/en_us/products/headphones/earbuds/quietcomfort-earbuds.html
https://www.bose.com/en_us/products/headphones/earbuds/bose-sport-earbuds.html
https://www.bose.com/en_us/products/headphones/earbuds/bose-sport-earbuds.html
https://aip.scitation.org/doi/pdf/10.1063/1.4822551
https://aip.scitation.org/doi/pdf/10.1063/1.4822551
https://ieeexplore.ieee.org/abstract/document/4626107/
https://ieeexplore.ieee.org/abstract/document/9480196/
https://ieeexplore.ieee.org/abstract/document/9480196/
https://ieeexplore.ieee.org/abstract/document/7738524
https://ieeexplore.ieee.org/abstract/document/7738524
https://arxiv.org/abs/1609.03193
http://arxiv.org/abs/1609.03193

volunteers. Journal of Interventional Cardiac Electrophysiology 60 (2020), 1–
8. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.
com/article/10.1007/s10840-020-00709-x

[24] Denis Demidov. 2012. VexCL: Vector expression template library for OpenCL.
https://2013.nscf.ru/TesisAll/Section%203/09_1430_DemidovDE_S3.pdf

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[26] Digi-Key. 2005. Speaker CMS-151125-076SP-67. https://www.puiaudio.com/media/
SpecSheet/AR01032MR-2-R.pdf

[27] EarableAI. 2021. Smart Brain Care Wearable. EarableAI. https://earable.ai/
preorder-en/

[28] Eargo. 2021. EARGO NEO. Eargo. https://shop.eargo.com/
[29] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and

Nathan Beckmann. 2021. Snafu: An Ultra-Low-Power, Energy-Minimal CGRA-
Generation Framework and Architecture. In 2021 ACM/IEEE 48th Annual In-
ternational Symposium on Computer Architecture (ISCA). IEEE, Manhattan, NY,
1027–1040. https://doi.org/10.1109/ISCA52012.2021.00084

[30] Yifan Gong and Yu-Hung Kao. 2000. Implementing a high accuracy speaker-
independent continuous speech recognizer on a fixed-point DSP. In 2000 IEEE
International Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No. 00CH37100), Vol. 6. IEEE, IEEE, Manhattan, NY, 3686–3689.

[31] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the 32nd
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 1737–
1746. https://proceedings.mlr.press/v37/gupta15.html

[32] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. 2014. Deep Speech: Scaling up end-to-end speech recognition.
CoRR abs/1412.5567 (2014). arXiv:1412.5567 http://arxiv.org/abs/1412.5567

[33] MuhammadHuzaifa, Rishi Desai, Xutao Jiang, Joseph Ravichandran, Finn Sinclair,
and Sarita V. Adve. 2020. Exploring Extended Reality with ILLIXR: A New Play-
ground for Architecture Research. CoRR abs/2004.04643 (2020). arXiv:2004.04643
https://arxiv.org/abs/2004.04643

[34] IntegrIT, Limited 2020. NatureDSP Signal for HiFi4. IntegrIT, Limited.
[35] TDK InvenSense. 2020. Bottom Port PDM Low-Power Multi-Mode Microphone

With High AOP Mode. TDK InvenSense. https://www.cdiweb.com/datasheets/
invensense/ds-000357-t3902-v1.0.pdf

[36] Jabra. 2021. Jabra Sport Pulse. Jabra. https://www.jabra.com/sports-headphones/
jabra-sport-pulse-wireless#100-96100010-02

[37] François Jarrier-Gellez. 2022. FragJage/SpeakerVoiceIdentifier. https://github.
com/FragJage/SpeakerVoiceIdentifier

[38] Fahim Kawsar, Chulhong Min, Akhil Mathur, and Allesandro Montanari. 2018.
Earables for personal-scale behavior analytics. IEEE Pervasive Computing 17, 3
(2018), 83–89.

[39] Sumin Kim, Seunghwan Oh, and Youngmin Yi. 2021. Minimizing GPU Kernel
Launch Overhead in Deep Learning Inference on Mobile GPUs. In Proceedings of
the 22nd International Workshop on Mobile Computing Systems and Applications
(Virtual, United Kingdom) (HotMobile ’21). Association for Computing Machinery,
New York, NY, USA, 57–63. https://doi.org/10.1145/3446382.3448606

[40] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan, and
Dean M Tullsen. 2003. Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction. In Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36. IEEE, IEEE, Man-
hattan, NY, 81–92.

[41] Hyoukjun Kwon. 2021.MAERI GITHUB. maeri-project. https://github.com/maeri-
project

[42] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfigurable interconnects.
ACM SIGPLAN Notices 53, 2 (2018), 461–475.

[43] Ruggero Donida Labati, Enrique Muñoz, Vincenzo Piuri, Roberto Sassi, and Fabio
Scotti. 2019. Deep-ECG: Convolutional neural networks for ECG biometric
recognition. Pattern Recognition Letters 126 (2019), 78–85.

[44] Waverly Labs. 2022. https://www.waverlylabs.com/
[45] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised Learn-
ing of Language Representations. CoRR abs/1909.11942 (2019). arXiv:1909.11942
http://arxiv.org/abs/1909.11942

[46] Steven M LaValle, Anna Yershova, Max Katsev, and Michael Antonov. 2014. Head
tracking for the Oculus Rift. In 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, IEEE, Manhattan, NY, 187–194.

[47] Charles E Leiserson. 1985. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers 100, 10 (1985), 892–901.

[48] Bede Liu et al. 1976. Fixed-point fast Fourier transform error analysis. IEEE
Transactions on Acoustics, Speech, and Signal Processing 24, 6 (1976), 563–573.

[49] Wenxin Liu, David Caruso, Eddy Ilg, Jing Dong, Anastasios I Mourikis, Kostas
Daniilidis, Vijay Kumar, and Jakob Engel. 2020. TLIO: Tight Learned Inertial

Odometry. IEEE Robotics and Automation Letters 5, 4 (2020), 5653–5660.
[50] MaximIntegrated. 2014. Low-Power, Ultra-Accurate 6 DoF IMU. MaximIntegrated.

https://datasheets.maximintegrated.com/en/ds/MAX21105.pdf
[51] Jeffrey L. McKinstry, Steven K. Esser, Rathinakumar Appuswamy, Deepika

Bablani, John V. Arthur, Izzet B. Yildiz, and Dharmendra S. Modha. 2018. Dis-
covering Low-Precision Networks Close to Full-Precision Networks for Effi-
cient Embedded Inference. CoRR abs/1809.04191 (2018). arXiv:1809.04191
http://arxiv.org/abs/1809.04191

[52] Mediatek. 2021. Mediatek MT2533. Mediatek. https://www.mediatek.com/
products/wearables/mt2533

[53] Microchip. 2021. IS2062/64. Microchip. http://ww1.microchip.com/downloads/
en/DeviceDoc/60001409D.pdf

[54] mrDIMAS. 2022. mrDIMAS/rg3d. https://github.com/mrDIMAS/rg3d
[55] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.

CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009), 28.
[56] Subhashini Narayan and E Sathiyamoorthy. 2019. A novel recommender system

based on FFT with machine learning for predicting and identifying heart diseases.
Neural Computing and Applications 31, 1 (2019), 93–102.

[57] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-dataflow acceleration. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE, IEEE, Manhattan,
NY, 416–429.

[58] Cedric Nugteren. 2018. CLBlast: A Tuned OpenCL BLAS Library. In Proceedings
of the International Workshop on OpenCL (Oxford, United Kingdom) (IWOCL ’18).
Association for Computing Machinery, New York, NY, USA, Article 5, 10 pages.
https://doi.org/10.1145/3204919.3204924

[59] Nuraphone. 2021. How It Works: Music in full colour: Personalized sound.
https://www.nuraphone.com/pages/how-it-works

[60] Nuvoton. 2021. Nuvoton audio DSP. Nuvoton. https://www.nuvoton.com/export/
resource-files/TRM_ISD94100_Series_EN_Rev1.09.pdf

[61] NXP. 2021. NXP LPC54114. NXP. https://www.nxp.com/docs/en/application-
note/AN12593.pdf

[62] James Peckham and Sharmishta Sarkar. 2019. Bose Frames review. https:
//www.techradar.com/uk/reviews/bose-frames-review

[63] Petersn. 2020. petersn/tinysr. https://github.com/petersn/tinysr
[64] Qualcomm. 2021. QualcommAptxHd. Qualcomm. https://www.aptx.com/aptx-hd
[65] QuickLogic. 2021. QuickLogic. QuickLogic. https://www.marketwatch.com/

press-release/quicklogics-amazon-qualified-reference-design-brings-alexa-to-
hearables-2021-02-18?siteid=bigcharts&dist=bigcharts&tesla=y

[66] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. CoRR
abs/1606.05250 (2016). arXiv:1606.05250 http://arxiv.org/abs/1606.05250

[67] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. CoRR
abs/1606.05250 (2016). arXiv:1606.05250 http://arxiv.org/abs/1606.05250

[68] Research and Markets. 2020. Hearables Market by Products, Type, Connectivity
Technology, and End User: Global Opportunity Analysis and Industry Forecast,
2019-2026. https://www.researchandmarkets.com/reports/5021786/hearables-
market-by-products-type-connectivity

[69] Romit Roy Choudhurry, Yu-Lin Wei, and Zhijian Yang. 2022. private communi-
cation.

[70] Scribd. 2019. Bragi pivot press release. https://www.scribd.com/document/
404134059/Bragi-pivot-press-release

[71] Matti Siekkinen, Markus Hiienkari, Jukka K Nurminen, and Johanna Nieminen.
2012. How low energy is bluetooth low energy? comparative measurements with
zigbee/802.15. 4. In 2012 IEEE wireless communications and networking conference
workshops (WCNCW). IEEE, IEEE, Manhattan, NY, 232–237.

[72] Ruby Singh. 2021. Apple AirPods Pro: A Complete Review. WirelessEar-
Buds.best. https://www.wirelessearbuds.best/product/apple-airpods-pro-a-
complete-review/

[73] Sony. 2021. Sony WF-1000XM3 Wireless Noise-Canceling Headphones. Sony.
https://www.sony.com/electronics/truly-wireless/wf-1000xm3

[74] Sudarshan Srinivasan, Pradeep Janedula, Saurabh Dhoble, Sasikanth Avancha,
Dipankar Das, Naveen Mellempudi, Bharat Daga, Martin Langhammer, Gregg
Baeckler, and Bharat Kaul. 2019. High Performance Scalable FPGA Accelerator
for Deep Neural Networks. CoRR abs/1908.11809 (2019). arXiv:1908.11809 http:
//arxiv.org/abs/1908.11809

[75] Tensilica, Inc 2010. Xtensa Instruction Set Architecture. Tensilica, Inc.
[76] Videolabs. 2020. videolabs/libspatialaudio. https://github.com/videolabs/

libspatialaudio
[77] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony

Nowatzki. 2020. Dsagen: Synthesizing programmable spatial accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, IEEE, Manhattan, NY, 268–281.

[78] Zhijian Yang, Yu-Lin Wei, Sheng Shen, and Romit Roy Choudhury. 2020. Ear-AR:
Indoor Acoustic Augmented Reality on Earphones. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3372224.3419213

13

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10840-020-00709-x
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10840-020-00709-x
https://2013.nscf.ru/TesisAll/Section%203/09_1430_DemidovDE_S3.pdf
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.puiaudio.com/media/SpecSheet/AR01032MR-2-R.pdf
https://www.puiaudio.com/media/SpecSheet/AR01032MR-2-R.pdf
https://earable.ai/preorder-en/
https://earable.ai/preorder-en/
https://shop.eargo.com/
https://doi.org/10.1109/ISCA52012.2021.00084
https://proceedings.mlr.press/v37/gupta15.html
https://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
https://arxiv.org/abs/2004.04643
https://arxiv.org/abs/2004.04643
https://www.cdiweb.com/datasheets/invensense/ds-000357-t3902-v1.0.pdf
https://www.cdiweb.com/datasheets/invensense/ds-000357-t3902-v1.0.pdf
https://www.jabra.com/sports-headphones/jabra-sport-pulse-wireless##100-96100010-02
https://www.jabra.com/sports-headphones/jabra-sport-pulse-wireless##100-96100010-02
https://github.com/FragJage/SpeakerVoiceIdentifier
https://github.com/FragJage/SpeakerVoiceIdentifier
https://doi.org/10.1145/3446382.3448606
https://github.com/maeri-project
https://github.com/maeri-project
https://www.waverlylabs.com/
https://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://datasheets.maximintegrated.com/en/ds/MAX21105.pdf
https://arxiv.org/abs/1809.04191
http://arxiv.org/abs/1809.04191
https://www.mediatek.com/products/wearables/mt2533
https://www.mediatek.com/products/wearables/mt2533
http://ww1.microchip.com/downloads/en/DeviceDoc/60001409D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001409D.pdf
https://github.com/mrDIMAS/rg3d
https://doi.org/10.1145/3204919.3204924
https://www.nuraphone.com/pages/how-it-works
https://www.nuvoton.com/export/resource-files/TRM_ISD94100_Series_EN_Rev1.09.pdf
https://www.nuvoton.com/export/resource-files/TRM_ISD94100_Series_EN_Rev1.09.pdf
https://www.nxp.com/docs/en/application-note/AN12593.pdf
https://www.nxp.com/docs/en/application-note/AN12593.pdf
https://www.techradar.com/uk/reviews/bose-frames-review
https://www.techradar.com/uk/reviews/bose-frames-review
https://github.com/petersn/tinysr
https://www.aptx.com/aptx-hd
https://www.marketwatch.com/press-release/quicklogics-amazon-qualified-reference-design-brings-alexa-to-hearables-2021-02-18?siteid=bigcharts&dist=bigcharts&tesla=y
https://www.marketwatch.com/press-release/quicklogics-amazon-qualified-reference-design-brings-alexa-to-hearables-2021-02-18?siteid=bigcharts&dist=bigcharts&tesla=y
https://www.marketwatch.com/press-release/quicklogics-amazon-qualified-reference-design-brings-alexa-to-hearables-2021-02-18?siteid=bigcharts&dist=bigcharts&tesla=y
https://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://www.researchandmarkets.com/reports/5021786/hearables-market-by-products-type-connectivity
https://www.researchandmarkets.com/reports/5021786/hearables-market-by-products-type-connectivity
https://www.scribd.com/document/404134059/Bragi-pivot-press-release
https://www.scribd.com/document/404134059/Bragi-pivot-press-release
https://www.wirelessearbuds.best/product/apple-airpods-pro-a-complete-review/
https://www.wirelessearbuds.best/product/apple-airpods-pro-a-complete-review/
https://www.sony.com/electronics/truly-wireless/wf-1000xm3
https://arxiv.org/abs/1908.11809
http://arxiv.org/abs/1908.11809
http://arxiv.org/abs/1908.11809
https://github.com/videolabs/libspatialaudio
https://github.com/videolabs/libspatialaudio
https://doi.org/10.1145/3372224.3419213

[79] Hasan Erdem Yantir, Wenzhe Guo, Ahmed M Eltawil, Fadi J Kurdahi, and
Khaled Nabil Salama. 2019. An ultra-area-efficient 1024-point in-memory fft
processor. Micromachines 10, 8 (2019), 509.

[80] SD You and Yo-Cheng Hou. 2004. Implementation of IMDCT for MPEG2/4 AAC
on 16-bit fixed-point digital signal processors. In The 2004 IEEE Asia-Pacific Con-
ference on Circuits and Systems, 2004. Proceedings., Vol. 2. IEEE, IEEE, Manhattan,
NY, 813–816.

[81] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8bert:
Quantized 8bit bert. In 2019 Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS). IEEE, IEEE, Manhattan,
NY, 36–39.

[82] ARM ML Zoo. 2021. ML-zoo - speech recognition - wav2letter. Arm
Ltd. https://github.com/ARM-software/ML-zoo/tree/master/models/speech_
recognition/wav2letter/tflite_int8

14

https://github.com/ARM-software/ML-zoo/tree/master/models/speech_recognition/wav2letter/tflite_int8
https://github.com/ARM-software/ML-zoo/tree/master/models/speech_recognition/wav2letter/tflite_int8

	Abstract
	1 Introduction
	2 EarBench: A Suite of Emerging Earable Applications
	2.1 HMI
	2.2 Audio
	2.3 Analytics
	2.4 Spatial Awareness

	3 The Earable Application-Hardware Performance Gap
	3.1 Key Computation Kernels
	3.2 Computational similarity between DSP and ML Kernels

	4 SpEaC: A Spatial Architecture for Earable Computing
	4.1 SpEaC vs Other CGRAs
	4.2 Programming SpEaC

	5 Methodology
	6 Results and Analysis
	6.1 SpEaC vs Low-power GPUs and ML Accelerators
	6.2 SpEaC vs a collection of accelerators
	6.3 SpEaC vs Offloading
	6.4 Configurable precision SpEaC (cpSpEaC)

	7 Summary and Conclusion
	8 Acknowledgements
	References

