Veryl: A Modern Hardware Description Language
for Open-Source Computer Architecture

Naoya Hatta
PEZY Computing K.K.
hatta@pezy.co.jp

Abstract—Hardware Description Languages (HDLs) form the
foundation of digital hardware design, yet many popular HDLs
predate modern software engineering practices and lack the
tooling ecosystem that has revolutionized software development.
We present Veryl, a modern HDL designed as a SystemVerilog
alternative that brings advanced safety features, improved devel-
oper ergonomics, and robust tooling to hardware development
while maintaining seamless interoperability with existing Sys-
temVerilog components. Veryl addresses key challenges in open-
source hardware design through simplified syntax, clock domain
safety analysis, generics for code reuse, real-time diagnostics, and
comprehensive tooling. By lowering barriers to entry and enhanc-
ing developer productivity, Veryl contributes to a more accessible
and collaborative open-source hardware design ecosystem.

I. INTRODUCTION

Hardware Description Languages (HDLs) remain the pri-
mary method for digital hardware design, yet leading lan-
guages like SystemVerilog contain legacy features from
decades past and lack the modern developer tools common in
software engineering. These limitations create significant bar-
riers to entry and reduce productivity, particularly impacting
open-source hardware communities where collaboration, code
reuse, and accessibility are paramount. Common challenges
include:

o Error-prone constructs and limited safety guarantees

« Poor tooling support compared to modern languages

o Limited facilities for code reuse and component sharing

« Difficult interoperability between projects and toolchains

e Critical issues like clock domain crossings often de-
tectable only at simulation time

These challenges have constrained the growth of open-
source hardware ecosystems compared to their software coun-
terparts. The Veryl Hardware Description Language addresses
these limitations while maintaining interoperability with exist-
ing SystemVerilog components and toolchains.

II. DESIGN AND IMPLEMENTATION

Veryl is designed with three key principles: syntactic
simplicity, SystemVerilog interoperability, and productivity.
The language maintains familiarity for SystemVerilog experts
while introducing modern features for safer, more efficient
hardware design.

Taichi Ishitani
PEZY Computing K.K.
ishitani @pezy.co.jp

Nathan Bleier
University of Michigan
nbleier @umich.edu

A. Language Features

Veryl introduces several key innovations:

Optimized Syntax: Veryl simplifies common hardware de-
sign patterns while removing ambiguities and unsynthesizable
constructs. Veryl simplifies common hardware design patterns
while removing amibguities and unsynthesizable constructs.
For example, if a module contains only one clock and one
reset, the Veryl compiler automatically infers their usage
without requiring explicit declaration. At the same time, it
allows explicit handling of multiple clocks when needed. This
approach simplifies the description of common patterns while
ensuring expressiveness for rare cases.

Strong Type System: Veryl’s type system includes a
clock type, and requires explicit annotation of clock domains
and unsafe clock domain crossing (CDC) blocks, enabling
automatic detection of unintended CDC issues during com-
pilation rather than simulation or post-synthesis:

module ModuleA (

i_clk_a: input 'a clock,

i_dat_a: input 'a logic,

i_clk_b: input 'b clock,

o_dat_b: output 'b logic,
) A

unsafe (cdc) {

i_dat_a; } }
Generics System with Prototypes: Veryl implements a
powerful generics system that goes beyond traditional pa-
rameter overrides, supporting parametrization of function sig-
natures; and module, data structure, interface, and package
definitions. Veryl also supports module and interface proto-
types, which enable using modules and interfaces themselves
as generic parameters, similar to Rust traits, or Haskell classes:

assign o_dat_b =

prototype ModInterface::<DWIDTH: const,
AWIDTH: const> (

i _clk input clock ,
i_reset: input reset ’
i_valid: input logic ,
i_data input logic<DWIDTH>,
i_addr input logic<AWIDTH>,
o_ready: output logic ,

)i

module MemoryController::<T: module

ModInterface::<8, 16>> (
i_clk input clock,
i_reset: input reset,

// Instantiate the generic module
inst memory_interface: T (

i_clk ,
i_reset,
//

)i

Real-time Diagnostics: Issues such as undefined, unused,
or unassigned variables are detected and reported during
editing rather than at compile or simulation time.

Visibility Control: Modules can be marked with the pub
keyword to indicate they are part of a module’s public API,
allowing better encapsulation of implementation details.

B. Modern Tooling Ecosystem

Veryl is built with a comprehensive, modern tooling ecosys-
tem that brings software development best practices to hard-
ware design:

Streamlined Installation: Unlike traditional EDA tools
with complex installation processes, Veryl can be installed
with a single command using either Cargo (Rust’s package
manager) or the dedicated verylup version manager. The
verylup tool enables users to easily switch between different
Veryl versions, install specific versions for different projects,
and update to the latest release—similar to rustup, nvm, or
pyenv in software development. This frictionless installation
process significantly lowers the barrier to entry, particularly
for new users and in educational settings where complex tool
setup often consumes valuable learning time.

Language Server Protocol (LSP): Veryl implements the
Language Server Protocol, providing real-time diagnostics,
go-to-definition, find-all-references, hover information, and
auto-completion within all major editors including VSCode,
Vim, Emacs, and JetBrains IDEs. This critical feature enables
developers to identify errors instantly rather than waiting for
compilation or simulation failures.

Automatic Formatting: The built-in formatter ensures
consistent code style across projects and teams, eliminating
style debates and reducing code review friction. The formatter
can be invoked manually, integrated into editors for on-save
formatting, and enforced in continuous integration pipelines.

Package Management: Built-in dependency management
enables easy incorporation of libraries by specifying repository
paths and versions in a project configuration file, similar to
npm, cargo, or pip in software ecosystems.

Testing Infrastructure: Test code written in SystemVerilog
or cocotb can be embedded directly in Veryl code and executed
through the veryl test command, enabling test-driven
development workflows that are standard in software but
challenging with traditional HDLs.

Documentation Generation: Support for Markdown,
WaveDrom waveform diagrams, and Mermaid diagrams within

documentation comments enables comprehensive, visually rich
documentation that evolves alongside the code.

III. SYSTEMVERILOG INTEROPERABILITY

A key feature of Veryl is its seamless interoperability with
existing System Verilog codebases. Unlike many language tran-
spilers that produce obfuscated or machine-optimized output,
the Veryl compiler generates exceptionally clean, human-
readable SystemVerilog code that follows established coding
conventions. This high-quality output is a deliberate design
choice that provides several critical benefits:

o Transparency for debugging and verification processes

o Easy code reviews of the generated SystemVerilog

o Compatibility with existing System Verilog toolchains and

workflows

o Ability to manually modify the generated code if needed

o Lower barrier to adoption through clear relationship

between Veryl code and its SystemVerilog equivalent,
including a Veryl-SystemVerilog map file

SystemVerilog modules, interfaces, and packages
can be referenced directly using the S$sv namespace,

allowing seamless bidirectional interoperability, e.g.:
let a: logic = $sv::PackageA::ParamA and
inst b: $sv::ModuleB(.x*);

This high-quality code generation, combined with the $sv
namespace approach, enables gradual adoption within existing
projects without requiring an all-or-nothing migration strategy.

IV. EVALUATION AND FEEDBACK

Initial user feedback indicates significant productivity im-
provements, with users reporting faster development cycles
and fewer debugging sessions. The language’s built-in safety
features have proven particularly valuable for identifying
cross-clock domain issues and type inconsistencies early in
the design process, problems that traditionally manifest only
during simulation or on physical hardware.

The abstraction of clock and reset polarity/synchronicity
allows the same Veryl code to target both ASIC flows (typ-
ically using negative asynchronous reset) and FPGA flows
(typically using positive synchronous reset) through build-time
configuration rather than code changes.

V. CONCLUSION AND FUTURE WORK

By lowering barriers to entry, improving code quality, and
enhancing developer productivity, Veryl contributes to the
broader movement toward accessible and collaborative open-
source hardware design. Our future work focuses on:

« Expanding language server capabilities for more sophis-

ticated code analysis

« Integrating with additional simulators and synthesis tools

o Building a comprehensive standard library for common

hardware components

o Implementing advanced static analysis for timing and

resource optimization

Through these efforts, we aim to make hardware design
more accessible to a broader community and accelerate inno-
vation in open-source computer architecture.

	Introduction
	Design and Implementation
	Language Features
	Modern Tooling Ecosystem

	SystemVerilog Interoperability
	Evaluation and Feedback
	Conclusion and Future Work

